PAGE

NGES Trading System
Trading API & Quotation API
Interface Specifications
Version：1.25
Document Release Date: 6-25-2014
[image: image1.jpg]7N\ kihdgattz
L) Liamg2s®

Table of contents
7Part I.
Introduction to NGES Trading System Interface

81.
Introduction

81.1.
Background

81.2.
TraderAPI Overview

91.3.
MduserAPI Overview

91.4.
Platforms of Currently Released TraderAPI/MduserAPI

101.5.
Version Amendment History

101.5.1.
Version 1.20

101.5.2.
Version 1.22

121.5.3.
Version 1.23

131.5.4.
Version 1.24

131.5.5.
Version 1.25

152.
FTD Architecture

152.1.
Communication Mode

162.2.
Data Stream

183.
Interface Mode

183.1.
TraderAPI Interface

183.1.1.
Dialog Stream and Query Stream Programming Interface

193.1.2.
Private Stream Programming Interface

193.1.3.
Public Stream Programming Interface

193.2.
MduserAPI Interface

193.2.1.
Dialog Stream Programming Interface

203.2.2.
Quotation Stream Programming Interface

214.
Operating Mode

214.1.
Workflow

214.1.1.
Initialization Phase

214.1.2.
Function Calling Phase

214.2.
Working Thread

224.3.
Interaction between Member System and the Trading System via TraderAPI

264.4.
Connection to the front-end of the Trading System

264.5.
Local Files

264.6.
Request-Reply Log Files

274.7.
Subscription Methods for Reliable Data Stream

274.7.1.
Re-Transmission Sequence ID Maintained by API

284.7.2.
Re-Transmission Sequence ID Managed by Member System

294.8.
Heartbeat Mechanism (Heartbeat)

304.9.
Front-ends List

334.10.
Disaster Recovery Interface

34Part II.
TraderAPI Reference Manual

351.
Categories of TraderAPI Interfaces

351.1
Management Interfaces

351.2
Service Interfaces

381.3
Services Not Open To Public in Current Version

392.
TraderAPI Reference Manual

392.1
CShfeFtdcTraderSpi Interface

392.1.1.
OnFrontConnected Method

392.1.2.
OnFrontDisconnected Method

392.1.3.
OnHeartBeatWarning Method

402.1.4.
OnPackageStart Method

402.1.5.
OnPackageEndMethod

402.1.6.
OnRspUserLogin Method

412.1.7.
OnRspUserLogout Method

422.1.8.
OnRspUserPasswordUpdate Method

432.1.9.
OnRspSubscribeTopic Method

442.1.10.
OnRspQryTopic Method

442.1.11.
OnRspError Method

452.1.12.
OnRspOrderInsert Method

472.1.13.
OnRspOrderAction Method

492.1.14.
OnRspQuoteInsert Method

512.1.15.
OnRspQuoteAction Method

532.1.16.
OnRspExecOrderInsert Method

542.1.17.
OnRspExecOrderAction Method

562.1.18.
OnRspQryPartAccount Method

572.1.19.
OnRspQryOrder Method

592.1.20.
OnRspQryQuote Method

602.1.21.
OnRspQryTrade Method

622.1.22.
OnRspQryClient Method

622.1.23.
OnRspQryPartPosition Method

632.1.24.
OnRspQryClientPosition Method

652.1.25.
OnRspQryInstrument Method

662.1.26.
OnRspQryInstrumentStatus Method

672.1.27.
OnRspQryBulletin Method

682.1.28.
OnRspQryMarketData Method

692.1.29.
OnRspQryMBLMarketData Method

702.1.30.
OnRspQryHedgeVolume Method

712.1.31.
OnRtnTrade Method

722.1.32.
OnRtnOrder Method

732.1.33.
OnRtnQuote Method

742.1.34.
OnRtnExecOrder Method

752.1.35.
OnRtnInstrumentStatus Method

752.1.36.
OnRtnInsInstrument Method

762.1.37.
OnRtnDelInstrument Method

772.1.38.
OnRtnInsCombinationLeg Method

772.1.39.
OnRtnDelCombinationLeg Method

782.1.40.
OnRtnBulletin Method

792.1.41.
OnRtnAliasDefine Method

792.1.42.
OnRtnFlowMessageCancel Method

792.1.43.
OnErrRtnOrderInsert Method

812.1.44.
OnErrRtnOrderAction Method

812.1.45.
OnErrRtnQuoteInsert Method

822.1.46.
OnErrRtnQuoteAction Method

832.1.47.
OnErrRtnExecOrderInsert Method

842.1.48.
OnErrRtnExecOrderAction Method

852.1.49.
OnRspCombOrderInsert Method

862.1.50.
OnRspQryCombOrder Method

882.1.51.
OnRtnCombOrder Method

892.1.52.
OnErrRtnCombOrderInsert Method

912.1.53.
OnRspQryExecOrder Method

922.1.54.
OnRspQryExchangeRate Method

932.1.55.
OnRspQryInformation Method

942.1.56.
OnMeasureNotify Method

942.1.57.
OnRspAbandonExecOrderInsert Method

952.1.58.
OnRspAbandonExecOrderAction Method

962.1.59.
OnRspQryAbandonExecOrder Method

972.1.60.
OnRtnAbandonExecOrder method

982.1.61.
OnErrRtnAbandonExecOrderInsert method

992.1.62.
OnErrRtnAbandonExecOrderAction method

1002.1.63.
OnRspQuoteDemand method

1012.1.64.
OnRtnQuoteDemandNotify method

1012.2
CShfeFtdcTraderApi Interfaces

1012.2.1.
CreateFtdcTraderApi Method

1022.2.2.
GetVersion Method

1022.2.3.
Release Method

1022.2.4.
Init Method

1022.2.5.
Join Method

1022.2.6.
GetTradingDay Method

1022.2.7.
RegisterSpi Method

1032.2.8.
RegisterFront Method

1032.2.9.
RegisterNameServer Method

1032.2.10.
SetHeartbeatTimeout Method

1042.2.11.
OpenRequestLog Method

1042.2.12.
OpenResponseLog Method

1042.2.13.
SubscribePrivateTopic Method

1042.2.14.
SubscribePublicTopic Method

1052.2.15.
SubscribeUserTopic Method

1052.2.16.
ReqUserLogin Method

1062.2.17.
ReqUserLogout Method

1062.2.18.
ReqUserPasswordUpdate Method

1072.2.19.
ReqSubscribeTopic Method

1082.2.20.
ReqQryTopic Method

1082.2.21.
ReqOrderInsert Method

1092.2.22.
ReqOrderAction Method

1102.2.23.
ReqQuoteInsert Method

1112.2.24.
ReqQuoteAction Method

1122.2.25.
ReqExecOrderInsert Method

1132.2.26.
ReqExecOrderAction Method

1142.2.27.
ReqQryPartAccount Method

1142.2.28.
ReqQryOrder Method

1152.2.29.
ReqQryQuote Method

1162.2.30.
ReqQryTrade Method

1162.2.31.
ReqQryClient Method

1172.2.32.
ReqQryPartPosition Method

1172.2.33.
ReqQryClientPosition Method

1182.2.34.
ReqQryInstrument Method

1192.2.35.
ReqQryInstrumentStatus Method

1192.2.36.
ReqQryMarketData Method

1202.2.37.
ReqQryBulletin Method

1202.2.38.
ReqQryMBLMarketData Method

1212.2.39.
ReqQryHedgeVolume Method

1222.2.40.
ReqCombOrderInsertMethod

1232.2.41.
ReqQryCombOrder Method

1242.2.42.
ReqQryExecOrder Method

1242.2.43.
ReqQryExchangeRate Method

1252.2.44.
ReqQryInformation Method

1262.2.45.
AddMeasureItem Method

1262.2.46.
ReqAbandonExecOrderInsert method

1272.2.47.
ReqAbandonExecOrderAction method

1282.2.48.
ReqQryAbandonExecOrder method

1292.2.49.
ReqQuoteDemand method

1303.
TraderAPI—A Development Example

133Part III.
MduserAPI Reference Manual

1341.
Categories of MduserAPI Interfaces

1341.1.
Management Interfaces

1341.2.
Service Interfaces

1352.
MduserAPI Reference Manual

1352.1.
CShfeFtdcMduserSpi Interface

1352.1.1.
OnFrontConnected Method

1352.1.2.
OnFrontDisconnected Method

1352.1.3.
OnHeartBeatWarning Method

1352.1.4.
OnPackageStart Method

1362.1.5.
OnPackageEnd Method

1362.1.6.
OnRspUserLogin Method

1372.1.7.
OnRspUserLogout Method

1372.1.8.
OnRspSubscribeTopic Method

1382.1.9.
OnRspQryTopic Method

1392.1.10.
OnRspError Method

1392.1.11.
OnRtnDepthMarketData Method

1412.1.12.
OnRtnFlowMessageCancel method

1412.2.
CShfeFtdcMduserApi Interfaces

1412.2.1.
CreateFtdcMduserApi Method

1412.2.2.
GetVersion Method

1422.2.3.
Release Method

1422.2.4.
Init Method

1422.2.5.
Join Method

1422.2.6.
GetTradingDay Method

1422.2.7.
RegisterSpi Method

1422.2.8.
RegisterFront Method

1432.2.9.
RegisterNameServer Method

1432.2.10.
SetHeartbeatTimeout Method

1432.2.11.
SubscribeMarketDataTopic Method

1432.2.12.
ReqUserLogin Method

1442.2.13.
ReqUserLogout Method

1452.2.14.
ReqSubscribeTopic Method

1452.2.15.
ReqQryTopic Method

1473.
MduserAPI—A Development Example

149Part IV.
Appendix

1491.
Error Code List—To Translate Upon Request

1522.
Enumeration Value List—Translated

1563.
Data Type List—Translated

Part I. Introduction to NGES Trading System Interface

This part is mainly about the interfaces of the NGES Trading System, including:

Chapter 1 gives you an introduction to the two main APIs for the NGES Trading System—TraderAPI and MduserAPI. TraderAPI is designed for Member System to send instructions for trading, controlling and query, and to receive private stream (including order entry, order operation response, and transaction return), public stream (market monitoring reminder), response stream and query stream (query results); MduserAPI is designed for Member System and Quotation Distributor System to receive quotation stream.

Chapter 2 introduces the FTD (Futures Trading Data) Exchange Protocol behind the two APIs, with a focus on illustration of data stream.

Chapter 3 introduces the coding interfaces of the two APIs with respect to different types of applications.
Chapter 4 introduces the operating mode of the two APIs, including thread communication, heartbeat mechanism, and how to achieve the reliability of information transmission for private data stream

As the basis of the NGES Trading System interface, contents in Part I should be studied carefully by users of TraderAPI and MduserAPI.

1. Introduction
1.1. Background
On 3rd November 2006, Shanghai Futures Exchange (SHFE) successfully launched the Phase I project for the “New Generation of Exchange Systems” (NGES) project, which includes the trading system (the NGES Trading System). The NGES Trading System employs open mainstream platform that can run in UNIX and Windows operating environment.
Under the centralized leadership of China Securities Regulatory Commission (CSRC), Shanghai Futures Exchange (SHFE), Zhengzhou Commodities Exchange (ZCE) and Dalian Commodities Exchange (DCE) jointly studied and developed the Futures Trading Data Exchange Protocol (i.e. FTD or FTD Protocol）. CSRC officially released the FTD Protocol on 25th March, 2005 (JR/T 0016-2004), and has implemented it as the industry standard ever since.
The NGES Trading System intrinsically uses the FTD Protocol as the main access protocol for Exchange Member’s remote trading. The FTD Protocol system is relatively complex. In order to reduce the difficulty level of developing Exchange Member’s remote trading system and improve the reliability level of the trading system, SHFE does not recommend the direct use of FTD protocol in member's remote trading system (shorten as "Member System" or "Member End") to access NGES Trading System. For this purpose, SHFE released a trading API (Namely, NGES TraderAPI or TraderAPI) and a quotation API (abbreviated to NGES MduserAPI or MduserAPI）for the NGES Trading System.
The Member System may dock with the NGES Trading System by calling the TraderAPI. While the TraderAPI will call back Member System once the Member System receives order return and transaction return from the Exchange.

The Member System or the quotation distributor system (the systems by which Exchange Members and quotation distributor receive the Exchange’s quotation are collectively known as the Quotation Receiving-End Application) may dock with the NGES Trading System by calling the MduserAPI. While the MduserAPI will call back the Quotation Receiving-End Application, once the Quotation Receiving-End Application receives market quotation from the Exchange.

TraderAPI encapsulates the complicated protocol conversion, data synchronization and network communication with the NGES Trading System. TraderAPI connects with the trading front-end processor of NGES Trading System by establishing a TCP-based virtual link channel, so as to facilitate Member System trading activities such as placing order. The channel created by TraderAPI is characterized by its multi-address registration, automatic reconnection and automatic retransmission of trading data, etc.

Similar to TraderAPI, MduserAPI connects with the trading front-end processor of NGES Trading System by establishing a TCP-based virtual link channel, so as to facilitate Member System trading activities such as placing order.

1.2. TraderAPI Overview
TraderAPI is a C++ based class library. Application program can use and extend the interface provided by the class library to implement all trading functions, including order and quote input, order and quote cancellation, order and price suspension, order and price activation, order and price modification, order and price query, transaction notes query, member’s client query, member’s position query, client’s position query, contract query, contract trading status query, Exchange bulletin query.

	File Name
	Version
	File Size
	File Description

	FtdcTraderApi.h
	V1.22
	
	 Header File for Trading Interface

	FtdcUserApiStruct.h
	V1.22
	
	Defines a series of data type header files required by the UserAPI

	FtdcUserApiDataType.h
	V1.22
	
	Defines a series of business-related data structure header files

	traderapi.dll
	V1.22
	
	Dynamic-link library (DLL) binary file

	traderapi.lib
	V1.22
	
	Import library(.Lib) file

These support MS VC 6.0 and MS VC.NET 2003 compiler. Need to open multi-threading compilation option/MT.
Note：The NGES Trading System supports many new order instructions (such as market price, best price, portfolio trading) and new trading varieties (such as option and its quote) as well. However, restricted by current trading rules, the said function of NGES Trading System are still not available. During the process of developing Member System, attention should be paid to the “Businesses Unavailable in Current Version” and specific description of each function.

1.3. MduserAPI Overview

MduserAPI is also a C++ based class library. Application program can use and extend the interface provided by the class library to implement all quotation subscription and receiving functions. This class library includes the following five files:

	File Name
	Version
	File Size
	File Description

	FtdcMduserApi.h
	V1.20
	
	Header File for Quotation Interface

	FtdcUserApiStruct.h
	V1.20
	
	Defines a series of data type header files required by the UserAPI

	FtdcUserApiDataType.h
	V1.20
	
	Defines a series of business-related data structure header files

	mduserapi.dll
	V1.20
	
	Dynamic-link library(DLL) binary file

	mduapi.lib
	V1.20
	
	Import library(.Lib) file

Support MS VC 6.0 & MS VC.NET 2003 compiler, selecting multi-threading compilation/ MT.
1.4. Platforms of Currently Released TraderAPI/MduserAPI

Currently, the following versions of operating system platforms are released:
· Intel X86/WindowsXP: including .h files, .dll files and .lib files
· Intel Linux: including .h files and .so files; complied in RedHat kernel 2.6.9-42
Please contact the following person if versions in other operating system are needed.
Contact: Wang Junpeng

Tel: +86-21-68400751

Mobile：+86-0-13795239757

E-mail：wang.jp@sfit.com.cn
1.5. Version Amendment History
1.5.1. Version 1.20
This version is modified according to “NGES Trading System Trading & Quotation API Interface Specifications Version1.12 R003”. Major modifications are made as below:

· Disaster Recovery feature is available in this version

· Additon of 【4.10. Disaster Recovery Interface】, brief description of disaster recovery principle.
· Due to addition of “Data Center Code” in the login message, parameters of ReqUserLogin and OnRspUserLogin methods for both TraderAPI and MduserAPI were modified.
· Addition of the descriptions for the “Data Stream Cancellation Notification” in TraderAPI, cf. 【OnRtnFlowMessageCancel Method】
· This version provides the function for querying the length of data stream

· When logging into the trading system, the length of the private stream of both existing member and trader would be returned.

· Addition of Descriptions for ReqQryTopic and RspQryTopic Method in TraderAPI and MdUserAPI for the purpose of stream length query.

· Modification to defects in previous versions:

· Addition of specification for GetVersion Method in TraderAPI and MduserAPI; which is not available in previous version except the GetVersion Method itself.
· Addition of specification for 【RegisterNameServer Method】 in MduserAPI; which is not available in previous version except the 【RegisterNameServer Method】 itself.
· Contact person above was changed from Zhou Jun to Wang Junpeng.
1.5.2. Version 1.22

This version is modified according to “NGES Trading System Trading & Quotation API Interface Specifications Version1.20”. Major modifications are made as below:

· Function interfaces added in this version include the follows:
· Additon of “Execution Declaration Query” in TraderAPI, cf. 【2.2.42 ReqQryExecOrder Method 】
· Additon of “Execution Declaration Query Response” in TraderAPI, cf. 【2.1.53 OnRspQryExecOrder Method 】
· Addition of the “Data Stream Cancellation Notification” in MduserAPI, cf. 【2.1.12 OnRtnFlowMessageCancel Method】
· Additon of “Exchange Rate Query” in TraderAPI, cf. 【2.2.43 ReqQryExchangeRate Method 】
· Additon of “Exchange Rate Query Response” in TraderAPI, cf. 【2.1.54 OnRspQryExchangeRate Method 】
· Additon of “Information Query” in TraderAPI, cf. 【2.2.44 ReqQryInformation Method 】
· Additon of “Information Query Response” in TraderAPI, cf. 【2.1.12 OnRtnFlowMessageCancel Method 】

· Fields added in Structures in this version include the follows:
· Additon of “ActionDay Field” in 【CShfeFtdcRspUserLoginField Structure】
· Additon of “ActionDay Field” in 【CShfeFtdcMarketDataField Structure】

· Additon of “ActionDay Field” in 【CShfeFtdcDepthMarketDataField Structure】
· Additon of “ActionDay Field” in 【CShfeFtdcQuoteField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcQuoteField Structure】
· Additon of “ActionDay Field” in 【CShfeFtdcTradeField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcTradeField Structure】
· Additon of “ActionDay Field” in 【CShfeFtdcOrderField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcOrderField Structure】
· Additon of “ActionDay Field” in 【CShfeFtdcCombOrderField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcCombOrderField Structure】

· Additon of “ActionDay Field” in 【CShfeFtdcExecOrderField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcExecOrderField Structure】
· Additon of “OffsetFlag Field” in 【CShfeFtdcExecOrderField Structure】
· Additon of “OffsetFlag Field” in 【CShfeFtdcInputExecOrderField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcInputExecOrderField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcInputOrderField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcOrderActionField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcInputQuoteField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcQuoteActionField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcExecOrderField Structure】
· Additon of “BusinessLocalID Field” in 【CShfeFtdcInputCombOrderField Structure】
· Additon of “CurrencyID Field” in 【CShfeFtdcRspInstrumentField Structure】

· Description of Fields added in this version:
· ActionDay: it is the date that an event happens actually. After the trading business is supported at night, the date that a transaction happens actually might be different from TradingDay, therefore a new field should be added to designate the date that a transaction happens actually. Meanwhile, the existed field TradingDay keeps its original meaning. For example, if a transaction happened in the evening on the Feb 1st, its ActionDay is Feb 1st, while its TradingDay is Feb 2nd.

· BusinessLocalID: it is local business identification set by custom. When a custom inputs an order, it brings a series of related information, such as order entry response, order return, transaction return, etc. All of the information emerges due to a same input operation. So the business identification set by custom is convenient for custom to query all of the related information ascribed to one input operation.

· CurrencyID: it is the currency identification. The currency identification contained in a contract structure refers to the kind of currency used in an order of the contract. That means if the currency identification is RMB, the contract is ordered in RMB, all of the related transaction and quotation use RMB as the monetary unit; if the currency identification is dollar, the contract is ordered with in dollar, all of the related transaction and quotation use dollar as the monetary unit.
· Correction over errors in such chapters as follows:
· Modify the parameter description of【2.2.41 ReqQryCombOrder Method 】in TraderAPI
· Modify the parameter description of【2.1.6 OnRspUserLogin Method 】in MduserAPI
1.5.3. Version 1.23

This version is modified according to “NGES Trading System Trading & Quotation API Interface Specifications Version1.22”. Major modifications are made as below:

· Modify the parameter description of ReqOrderInsert Method, cf. 【2.2.21 ReqOrderInsert method】 :
· Parameter TimeCondition: from 【only supports "valid on that day"】 to 【supports "valid on that day" and "Immediate or cancel" 】
· Paramteter VolumeCondition: from 【only supports "arbitrary quantity"】 to 【supports "arbitrary quantity"; also, supports “entire quality” or “minimum quality” when the TimeCondition is set to be TC_IOC】
· Paramteter MinVolume: from 【The Min.volume,not used】to 【The Min.volume, used when the VolumeCondition is set as “minimum quality”】
· FAK (Fill and Kill) instruction is to set the type of validity period as TC_IOC, while set the type of volume as VC_AC which means the arbitary number; FOK (Fill Or Kill) instruction is to set the type of validity period as TC_IOC, while set the type of volume as VC_CV which means the total number. In addition, FAK instruction can also specify the minimum number of volume. That is, in the specified price, orders above the minimum number are dealt, the remaining orders are automatically cancelled by system. Otherwise the system cancell all of the orders. In this case, the type of validity period is set as TC_IOC, number condition is set as VC_MV, at the same time, the MinVolume interface also should be set. Please refer to Part IV Appendix 2 Enumberation Value List for specific types of Enumberation Values.
1.5.4. Version 1.24

This version is modified according to “NGES Trading System Trading & Quotation API Interface Specifications Version1.23”. Major modifications are made as below:

· Function interfaces added in this version include the follows:
· Additon of 【add local measurement node】in TraderAPI, cf. 【2.2.45 AddMeasureItem Method 】
· Additon of 【response the measurement notification】 in TraderAPI, cf. 【2.1.56 OnMeasureNotify Method 】
1.5.5. Version 1.25

This version is modified according to “NGES Trading System Trading & Quotation API Interface Specifications Version1.24”. Major modifications are made as below:

· Function interfaces added in this version include the followings:
· Additon of 【abandonment execution declaration entry response】in TraderAPI, cf. 【2.1.57 OnRspAbandonExecOrderInsert Method 】
· Additon of 【abandonment execution declaration operation response】 in TraderAPI, cf. 【2.1.58 OnRspAbandonExecOrderAction Method 】
· Additon of 【abandonment execution declaration query response】 in TraderAPI, cf. 【2.1.59 OnRspQryAbandonExecOrde Method 】

· Additon of 【return on abandonment execution declaration】 in TraderAPI, cf. 【2.1.60 OnRtnAbandonExecOrder Method 】

· Additon of 【return on abandonment execution declaration entry error】 in TraderAPI, cf. 【2.1.61 OnErrRtnAbandonExecOrderInsert Method 】
· Additon of 【return on abandonment execution declaration operation error】 in TraderAPI, cf. 【2.1.62 OnErrRtnAbandonExecOrderAction Method 】
· Additon of 【abandonment execution declaration entry request】 in TraderAPI, cf. 【2.2.46 ReqAbandonExecOrderInsert Method 】
· Additon of 【abandonment execution declaration operation request】 in TraderAPI, cf. 【2.2.47 ReqAbandonExecOrderAction 】
· Additon of 【abandonment execution declaration query request】 in TraderAPI, cf. 【2.2.48 ReqQryAbandonExecOrder Method 】
· Additon of 【quote query entry request】 in TraderAPI, cf. 【2.2.49 ReqQuoteDemand Method 】
· Additon of 【quote query entry response】 in TraderAPI, cf. 【2.1.63 OnRspQuoteDemand Method 】
· Additon of 【distribution of quote query request】 in TraderAPI, cf. 【2.1.64 OnRtnQuoteDemandNotify Method 】

· Fields modified in Structures in this version include the followings:

· Additon of “HedgeFlag Field”, “PosiDirection Field”, “ReservePositionFlag Field” and “CloseFlag Field” in 【CShfeFtdcInputExecOrderField Structure】

· Additon of “HedgeFlag Field”, “PosiDirection Field”, “ReservePositionFlag Field” and “CloseFlag Field” in 【CShfeFtdcExecOrderFiel Structure】

· Fields added in Structures in this version include the followings:
· Structure of abandonment execution declaration entry 【CShfeFtdcInputAbandonExecOrderField structure】；
· Structure of abandonment execution declaration operation 【CShfeFtdcAbandonExecOrderActionField structure】；
· Structure of abandonment execution declaration query 【CShfeFtdcQryAbandonExecOrderField structure】；
· Structure of abandonment execution declaration 【CShfeFtdcAbandonExecOrderField structure】；
· Structure of quote query entry request 【CShfeFtdcInputQuoteDemandField structure】；
· Structure of quote query response【 CShfeFtdcQuoteDemandInfoField structure】；
· Structure of quote query request distribution【CShfeFtdcQuoteDemandNotfiyField structure】；
· Data types added in this version include the followings:
· TFtdcExecOrderPositionFlagType is a flag type that whether futures position is kept after futures option is exercrised, which will be divided into reserved, i.e. SHFE_FTDC_EOPF_Reserve and not reserved, i.e. SHFE_FTDC_EOPF_UnReserve；
· TFtdcExecOrderCloseFlagType is a flag type that whether futures position is closed after futures option is exercrised which will be divided into close posiont automatically , i.e.SHFE_FTDC_EOCF_AutoClose and not closed, i.e. SHFE_FTDC_EOCF_NotToClose；
· Addition of “IS_TransactionProcessing” transaction processing phase, currently, for futures options, the phase is for declaration only。
· Error Codes added in this version are as follows:
· 121：erroneous abandonment execution declaration field
· 122： erroneous abandonment execution declaration operation field
· 123： duplicate abandonment execution declaration
· 124： abandonment execution declaration cancelled
· 125： abandonment execution declaration cannot be found

· 126： abandonment execution declaration can only be used in futures option
· 127： not in declaration period
· 128： option exercise can only be abandoned for long positions
· 129： execution declaration or abandonment execution declaration cannot be open position
· 130： insuffent posiont for reservation application
2. FTD Architecture

Both Member System and Quotation Distributor System do not communicate directly with the core host of NGES Trading System. From the perspective of security segregation, members and quotation distributor might not be aware of the existence of the trade-matching host and quotation host. Members and quotation distributor can only connect to the two proxy servers of the above hosts, namely, Trading FEP and Quotation FEP. Trading FEP is designed to handle trading businesses from Member System rather than quotation distribution that is handled by Quotation FEP.

TraderAPI communicates with Trading FEP of NGES Trading System via FTD Protocol that is based on TCP Protocol.

MduserAPI communicates with Quotation FEP of NGES Trading System via FTD Protocol that is based on TCP Protocol. Quotation FEP is responsible for processing quotation subscription query from Quotation Receiving Systems, as well as pushing the subscribed quotation back to Quotation Receiving Systems.

2.1. Communication Mode

All communications within the FTD Protocol are based on certain communication mode. Actually, each communication mode is a way for both parties to cooperate with each other.
FTD involves the following three communication modes:

· Dialog Communication Mode

· Private Communication Mode

· Broadcast Communication Mode

Dialog Communication Mode refers to communication request initiated by Member System. Such requests (e.g. order, query, etc.) are received and processed by the Trading System and responses are sent back by the Trading System. Such communication mode is similar to the usual client/server mode.

Private Communication Mode means that trading system sends information (e.g. trade return) on its own initiative to a particular member or particular trader with particular Member.

Broadcast Communication Mode means that trading system sends the same information (e.g. bulletin, public information in market etc.

Connection between communication mode and network would not necessarily represent a simple one-to-one relationship. That is to say, message of different communication modes can be sent within one network connection, while message of one communication mode can also be delivered within different connections.

In any of the communication modes, the communication process is the same, as depicted in Chart 1:

[image: image2]
Chart 1: Workflow for All Communication Modes

2.2. Data Stream

Trading front-end supports dialogue communication mode, private communication mode, and broadcast communication mode. The quotation distribution function of quotation front-end supports dialogue communication mode and broadcast communication mode.

1) Dialog Communication Mode

Dialog Communication Mode supports dialog data stream and query data stream.

Dialog data stream is a bidirectional data flow through which Member System sends trading request and the trading system feeds back response. Trading system does not maintain the status of the dialog stream. In the event of a system failure, dialog data stream would be reset, while data in transit might be lost.

Query data stream is also a bidirectional data flow through which member system sends query request and the trading system feeds back response. Trading system does not maintain the status of the query stream. In the event of a system failure, query data stream would be reset, while data in transit might be lost.

2) Private Communication Mode

In the case of Private Communication Mode, data steam is reliable. Within a trading day, when Member System resumes its connection after a disconnection, Member System can request the trading system to send the data within private data stream following a designated sequence number. Private data stream provides Member System with order status report, trade return message and etc. Private data stream is classified into member’s private stream and trader’s private stream.

Trading system maintains a private data stream for each member. All return messages for a particular member such as order return and trade return, will be released through member’s private stream. Only after a sufficient authority is given can a trader subscribe member’s private stream.

Trader’s private stream is similar to member’s private stream, but it only covers return message for trades initiated by a particular trader. Every trader has the right to subscribe to his or her own trader’s private stream.

3) Broadcast Communication Mode

Broadcast Communication Mode supports public data stream.

Public data stream is a uni-directional data stream that is sent from trading system or quotation system to Member System for delivering public market information. Public data stream is a reliable data stream: Trading System maintains all public data streams within the system. Within a trading day, when Member System resumes its connection after a disconnection, Member System can request the trading system to send the data within public data stream following a designated sequence number.
Take quotation as an example. Quotation data stream is a public data stream that is sent from Quotation releasing system to Member System for delivering quotation information. Quotation data stream is a reliable data stream: the Trading System maintains all the quotation data streams. Within a trading day, when Quotation-Receiving System resumes its connection after a disconnection, Member System can request the trading system to send the data within public data stream following a designated sequence number.
Content of quotation provided by the Trading System is organized according to topics. Each topic covers quotation for a particular group of contracts, as well as quotation release contents and release methods, including market depth, sample frequency, delay time etc. The Exchange announces the specific contents of each topic of quotation and topic of quotation that can be subscribed by each quotation user: Each quotation topic corresponds with one quotation stream.

In order to get quotation notice, Quotation-Receiving System must subscribe to one or more quotation release topic after connecting with front-end.

3. Interface Mode
3.1. TraderAPI Interface

TraderAPI provides two interfaces, namely CShfeFtdcTraderApi and CShfeFtdcTraderSpi. These two interfaces are encapsulation on the FTD Protocol.

Member system can send operating requests via CShfeFtdcTraderApi; and it can handle/process the response and reply from the NGES Trading System by inheriting CShfeFtdcTraderSpi and reloading the callback functions.
3.1.1. Dialog Stream and Query Stream Programming Interface

The programming interface for communication through dialog stream typically looks like below.

////Request：
int CShfeFtdcTraderApi::ReqXXX (CShfeFtdcXXXField *pReqXXX,
 int nRequestID)

////Response：
Void CShfeFtdcTraderSpi::OnRspXXX(CShfeFtdcXXXField *pRspXXX,
 CShfeFtdcRspInfoField *pRspInfo,
 int nRequestID,
 bool bIsLast)

The 1st parameter for the request interface is the requested content, and it cannot be left as empty. This parameter would use a class according to the type of the request command/content. Please refer to the appendix “Enumeration Value List” and “Data Type List” for variable types and allowed values for the members of this class category.
The 2nd parameter of the request interface is the request ID. The request ID is maintained by Member System and the Exchange advises that every request ID should be unique. The request ID filled in upon sending the request would be sent back to Member System together with the response from the NGES Trading System, and user can match a particular request with a particular response by using this number.
The CShfeFtdcTraderSpi callback function/method would be called upon getting reply from the Trading System. If there is more than one piece of response data, the callback function/method would be called multiple times.

The callback function/method requires a total of 4 input parameters:

· The 1st parameter is the actual data in the response. If there is an error in the process or if there is no such result, this field may be NULL.

· The 2nd parameter is the processed result, indicating whether the processing of the result for the current request is a success or a failure. If multiple callback occurs, the value for this parameter from the 2nd callback onwards might all be NULL.

· The 3rd parameter is the request ID filled in when sending the request.

· The 4th parameter is the flag for the end of response, indicating whether this is the last callback for the current response.

3.1.2. Private Stream Programming Interface

As described in section 2.2, data via the private stream is private information for a particular Exchange Member or a particular trader, including order return, transaction return, quote return, declaration return etc.

The programming interface for receiving return message via private stream typically looks like:

void CShfeFtdcTraderSpi::OnRtnXXX(CShfeFtdcXXXField *pXXX)；

////or

void CShfeFtdcTraderSpi::OnErrRtnXXX(CShfeFtdcXXXField *pXXX,

 CShfeFtdcRspInfoField *pRspInfo);

The CShfeFtdcTraderSpi callback function/method would be called upon getting return data from the Trading System via the private data stream. The parameter of the callback function is the specific content of the return.
3.1.3. Public Stream Programming Interface

Public stream is for the public data from the Exchange, including convention, declaration etc.

The programming interface for receiving return message via private stream typically looks like:

void CShfeFtdcTraderSpi::OnRtnXXX(CShfeFtdcXXXField *pXXX)；

The CShfeFtdcTraderSpi callback function/method would be called upon getting return data from the Trading System via the public data stream. The parameter of the callback function is the specific content of the return.
3.2. MduserAPI Interface

Similar to the TraderAPI, MduserAPI also provides two interfaces, namely CShfeFtdcMduserApi and CShfeFtdcMduserSpi. These two interfaces are encapsulation on the FTD Protocol.
Quotation Receiving System can send operation request via CShfeFtdcMduserApi and it can process the response and reply from the NGES Trading System by inheriting CShfeFtdcMduserSpi and reloading the callback functions.
3.2.1. Dialog Stream Programming Interface
The programming interface for communication through dialog stream typically looks like below.
////Request：
int CShfeFtdcMduserApi::ReqXXX(CShfeFtdcXXXField *pReqXXX,
 int nRequestID)

////Response：
void CShfeFtdcMduserSpi::OnRspXXX(CShfeFtdcXXXField *pRspXXX,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)

The 1st parameter for the request interface is the requested content, and it cannot be left as empty. The 2nd parameter of the request interface is the request ID. The request ID is maintained by Member System and the Exchange advises that every request ID should be unique. The request ID filled in upon sending the request would be sent to Member System together with the response from the NGES Trading System, and user can match a particular request with a particular response.

The CShfeFtdcMduserSpi callback function would be called upon getting reply from the Trading System. If there is more than one piece of response data, the callback function/method would be called multiple times.

The callback function requires a total of 4 input parameters:

· The 1st parameter is the actual data in the response. If there is an error in the process or if there is no such result, this field may be NULL.

· The 2nd parameter is the processed result, indicating whether the processing of the result for the current request is a success or a failure. If multiple callbacks occur, the value for this parameter from the 2nd callback onwards might all be NULL.

· The 3rd parameter is the request ID filled in when sending the request.

· The 4th parameter is the flag for the end of response, indicating whether this is the last callback for the current response.

3.2.2. Quotation Stream Programming Interface

Quotation stream carries market quotation information released by the Trading System.

The programming interface for communication through quotation stream typically looks like below.
void CShfeFtdcMduserSpi::OnRtnXXX(CShfeFtdcXXXField *pXXX)；

The CShfeFtdcMduserSpi callback function would be called upon receiving quotation data from the Trading System via the quotation stream. The parameter of the callback function is the specific content of the declaration.
4. Operating Mode
4.1. Workflow

The interaction process between Member System / Quotation Receiving System and the NGES Trading System can be divided into two stages: the initialization phase and the function calling phase.
4.1.1. Initialization Phase
In the initialization phase, Member System/Quotation Receiving System has to complete the steps below (for more details, please refer to the codes in the Development Example section).
	Steps
	Member System
	Quotation Receiving System

	1
	Generate an instance of CShfeFtdcTraderApi
	Generate an instance of ShfeFtdcMduserApi

	2
	Generate an event handler instance
	Generate an event handler instance

	3
	Register an event handler instance
	Register an event handler instance

	4
	Subscribe to the private stream;
Subscribe to the public stream;
	Subscribe to the quotation stream;

	5
	Set the network address for the trading front-end, NameServer 1
	Set the network address for the quotation service NameServer 1

	6
	Initialization
	Initialization

1In order to be compatible with the previous version, this API still provides interfaces for the registration of the trading front-end (and quotation service). However, SHFE recommends not using these interfaces directly, which would be removed in the next version. Please refer to Section 4.9 FEM List for more details of the NameServer.
4.1.2. Function Calling Phase
In the function calling phase, Member System can call any of request methods from the TraderApi interface, e.g. ReqUserLogin, ReqOrderInsert, etc, and also provide callback functions to respond to return messages. It should be noted that:
1) Input parameters for the API request function cannot be NULL.

2) The meaning of the output parameter returned from the API request function is: 0 stands for success, other numbers indicate an error. For details of error codes, please refer to the Appendix for Error Code List.

4.2. Working Thread
The application program of Member System or Quotation Receiving System consists of at least two threads: one is the application program as the main thread, and the other is the API working thread (TraderAPI or MduserAPI). The communication between the application program and the trading front-end or quotation front-end is driven by the API working thread.

The interface provided by CShfeFtdcTraderApi and CShfeFtdcMduserApi are thread-safe; It is permittable for multiple application programs to send requests simultaneously.
The interface callback provided by CShfeFtdcTraderSpi is driven by the TraderAPI working thread. It receives the required data from the front-end of the Trading System by implementing the interface method of SPI.
Similarly, the interface callback provided by CShfeFtdcMduserSpi is driven by the MduserAPI working thread. It collects the required data from Quotation front-end by implementing the interface method of SPI.

If there is blocking in callback function of the overloaded application program of Member System, TraderAPI or MduserAPI working thread would also be blocked. In the case, the communication between API and Trading front-end or Quotation front-end would stop; therefore, usually quick return is required for callback functions. In the callback functions of derived classes of CShfeFtdcTraderSpi or CShfeFtdcMduserSpi, the quick return can be achieved by storing the data into the buffer or via the Windows messaging mechanism.

[image: image3.emf]SPI Object

Replys for API requests,

e.g.,

transaction information,

client error information,

contract modification

information, etc.

Trading front-end

API Object

API requests, e.g.,

login request,

order request,

query request, etc.

Member System

[image: image4.emf]SPI object

Quotation information

Quotation front-end

API Object

Login request

Subscription request

Quotation Receiving System

Chart 2. TradeAPI working thread Chart 3. MduserAPI working thread

4.3. Interaction between Member System and the Trading System via TraderAPI
Member System interacts with the Trading System through TraderAPI. Requests from Member System are sent to the Trading System through TraderAPI,and reply and return messages from the Trading System are sent to Member System through TraderAPI as well.

Trading interface and private stream interface of TraderAPI are interrelated. For instance, after user enters an order by ReqOrderInsert, order response OnRspOrderInsert is received immediately, which indicates that the Trading System has received the order. After the order enters the Trading System, if the order’s trading status changes, an order return message OnRtnOrder would be received. If the order is matched (including partially matched and completely matched), trade return (or transaction return) message OnRtnTrade would be received; meanwhile, the order and trade return (or transaction return) messages of one user would also be received by the other users who are subordinate for the same member as this user (if such user does not log in by means of receiving trader's private stream only).
Let’s illustrate the concept with a day-to-day trading example. Assuming there are two Member Systems A and B, the events include the following:

· Trader A places an order, with details: cu0711, buy, 20 lots, 64000 RMB / tonne
· CShfeFtdcTraderApi::ReqOrderInsert：Order entry request. This function is called by the main application thread of Member System, and sent to the front-end of the NGES Trading System through dialog stream.
· Trading System Order Processing: The order’s System ID is numbered 1. Because there is no counterparty in matching queue at the moment, the order status is “Not Traded and Still Queuing”. The front-end of the Trading System send order response to the dialog stream of Trader A; the delivered order is returned to the private stream of Trader A and the private stream of the member to whom Trader A is subordinate. Both the order response and the order return message are processed by TraderAPI working thread with the calling of the SPI object methods.
· CShfeFtdcTraderSpi::OnRsqOrderInsert：The front-end of the Trading System provides a reply for the request with contents: entry is successful, and the order with Local ID 1 is numbered as System ID 1. This function is called by TraderAPI working thread after receiving the reply from the front-end of the Trading System.
· CShfeFtdcTraderSpi::OnRtnOrder：The front-end of the Trading System immediately provides order return to private stream of Trader A or private stream of the Member to whom Trader A is subordinate. Because other seats are unable to obtain the order details, to maintain information synchronization, the order return includes all contents of the order, e.g. order status, etc. This function is called by the TraderAPI working thread after receiving the order return from the front-end of the Trading System. If there are other traders of Member A who login into the Trading System and receive private stream of Member A, they will receive the same order return message (similarly in the below case).
1) TraderB places an order, with details: cu0711, sell, 10 lots, 64000 RMB / tonne
· CShfeFtdcTraderApi::ReqOrderInsert：Order entry request.
· Order Processing of the Trading System: The order’s System ID is numbered 2. Because there is no counterparty in the queue waiting for matching, the order status is “Not Filled and Still Queuing”.
· Order Processing of the Trading System: Matching is attempted and succeeds, thus the order is in the status of “All Filled”. The front-end of the NGES Trading System sends:
· order response to Trader B’s dialog stream;
· order return to the private stream of Trader B and the private stream of the Member to whom Trader B is subordinate;
· order return to the private stream of Trader A and the private stream of the Member to whom Trader A is subordinate, informing that the status of the order with System ID 1 has been changed by the Trading System to “Partially Filled and Still Queuing”, and that the “remaining unfilled lot” is 10;
· trade return (or transaction return) to the private stream of Trader B and the private stream of the Member to whom Trader B is subordinate;
NGES Trading System would ensure that:
· order return would be delivered to Member System ahead of the trade return (transaction return)
· “remaining unfilled lot” field in return order has already reflected the updated amount in the order book of the Trading System, so that there is no need to make adjustment again based on the volume in transaction return.
· CShfeFtdcTraderSpi::OnRsqOrderInsert：The trading front-end provides a reply for the request, with contents that order entry is successful, and the order with Local ID 1 is numbered with System ID 2.
· CShfeFtdcTraderSpi::OnRtnOrder：The trading front-end immediately provides order return to private stream of Trader B and the private stream of the Member to whom Trader B is subordinate; the order status is “All Filled”.
· CShfeFtdcTraderSpi::OnRtnOrder：The trading front-end of SHFE immediately provides order return to the private stream of Trader A and the private stream of the Member to whom Trader A is subordinate; Order status is “Partially Filled and Still Queuing”, and the “remaining unmatched lot” is 10
· CShfeFtdcTraderSpi::OnRtnTrade：The trading front-end immediately provides trade return (or transaction return) to the private stream of Trader A and the private stream of the Member to whom Trader A is subordinate.

· CShfeFtdcTraderSpi::OnRtnTrade：The trading front-end of the Exchange immediately provides trade return (or transaction return) to the private stream of Trader B and the private stream of the Member to whom Trader B is subordinate.

2) Trader A cancels the order

The following chart describes the UML interaction among the Member System, TraderAPI and the Trading System.

[image: image5.emf]Member

System A

Member

System A

TraderAPI

TraderAPI

NGES Trading

System

NGES Trading

System

TraderAPI

TraderAPI

Member

System B

Member

System B

CShfeFtdeTraderApi::

ReqOrderInsert

Order request: Local ID = 1,

cu0711, Buy 20 lots, RMB 64000

Order response: Success,

Local ID = 1, System ID = 1

CShfeFtdeTraderSpi::

OnReqOrderInsert

Order return: System ID = 1,

Local ID = 1, Status =

“

Not

Filled and Still Queuing

”

CShfeFtdeTraderSpi::

OnRtnOrder

Order

processing

CShfeFtdeTraderApi::

ReqOrderInsert

Order request: Local ID = 1,

cu0711, Sell 10 lots,

RMB 64000

Order response: success,

Local ID = 1, System ID = 2

CShfeFtdeTraderSpi::

OnReqOrderInsert

Trade return: Trade ID = 1,

System ID = 2,

Local ID = 1

CShfeFtdeTraderSpi::

OnRtnTrade

Order

Processing

Order return: System ID = 1,

Local ID = 1, Status =

“

Partially

Filled and Still Queuing

”

Trade return: Trade ID = 1,

System ID = 1,

Local ID = 1

CShfeFtdeTraderApi::

ReqOrderAction

Cancellation request,

System ID = 1

Cancellation

Processing

Order return,

System ID = 1, Local ID = 1,

Status =

“

Cancelled

”

CShfeFtdeTraderSpi::

OnReqOrderAction

Cancellation response: Success

Legend:

Private stream Response stream

Order return: System ID = 2,

Local ID = 1, Status =

“

All

Filled

”

CShfeFtdeTraderSpi::

OnRtnOrder

CShfeFtdeTraderSpi::

OnRtnOrder

CShfeFtdeTraderSpi::

OnRtnTrade

Chart 4: Illustration of the interaction between Member System and the Trading System
4.4. Connection to the front-end of the Trading System
TraderAPI and MduserAPI communicate with Trading/Quotation front-end of SHFE via the FTD Protocol which is built upon the TCP Protocol. TraderAPI uses the CShfeFtdcTraderApi::RegisterFront method to register the network address of the trading front-end. MduserAPI uses the CShfeFtdcMduserApi::RegisterFront to register the network address of the quotation front-end.
SHFE owns multiple trading and quotation front-ends, for both load balancing and backup purposes, which improves the system’s performance and reliability. In order to guarantee the reliability for communications during trading hours, TraderAPI and MduserAPI may register multiple front-ends. After the API is initialized, it will randomly choose one front-end from the registered front-ends and try to establish network connection with it. If the attempt fails, it will try other registered fronted-ends one by one until the connection is successful. If there was network failure during trading process, the API would attempt to connect to the other front-ends in a similar way.
SHFE would announce network addresses for at least 2 front-ends (located in the Shanghai Futures Tower or Zhangjiang Data Cener). Hence, the Member System should register at least 2 front-ends’ network addresses to prevent single point hazard resulting from the failure of the connected front-end. In view that the bandwidth requirement of FTD Protocol is higher than that of OFPV1 or OFPV2, it is highly recommended that members should use a dedicated DDN line with a bandwidth of 128K and above, or a dedicated SDH digital line with a bandwidth of 2M. Shanghai Futures Exchange and China Financial Futures Exchange share the Member’s remote trading network access, which means that the link directly connects to Shanghai Futures Exchange can serve as a backup link to access the China Financial Futures Exchange, and vice versa.
4.5. Local Files
During runtime, TraderAPI would write some data into local files. When calling the CreateFtdcTraderApi function, an input parameter can be passed to specify the local file path. This path must be created before runtime. The file extension of all local files is “.con”.
MduserAPI works similarly as TraderAPI, whereas the function called is CreateFtdcMduserApi.
4.6. Request-Reply Log Files
TraderAPI offers two log interfaces for recording communication logs. OpenRequestLog is used to open the request log and OpenResponseLog is used to open the reply log. If the logs are opened, all service requests would be written into the request log, and all service reply and returns would be recorded into the reply log. Note, for confidentiality and storage space saving, login request/reply and query request/reply are not logged.

Request Format:

Date time, request name, request result, [request parameter name, request parameter content]
Reply (Message) Format:

Date time, reply name, response ID, response content, [reply parameter name, reply parameter content]
Return (Message) Format
Date time, return name, [return parameter name, return parameter content]
4.7. Subscription Methods for Reliable Data Stream
In the FTD protocol, the private stream, public stream and quotation stream, etc, which can transmit data from one side to the other side in a reliable and orderly manner, are called reliable data streams. Reliable data streams are critical to ensure the correctness and completeness of the data in the Member System. For example, the Member System may obtain sufficient information through the trading-system-delivered various return messages in the Member’s private data stream, so that the Member System could complete the its business operation at the Member’s end. In order to guarantee the correctness of business operations in the Member System, messages in the private stream have to be received in a reliable, orderly and unique manner.
Reliable data stream relies on re-transmission to ensure the reliability and order. This is to say, the client-end is responsible for managing the Sequence ID of the data stream. In case of transmission interruption, the client-end could re-subscribe to the data stream from a specified Sequence ID. Data integrity can be ensured in this way.

The dialog stream and query stream do not support re-transmission; therefore, they are unreliable streams.

The interface of the Trading System offers two methods for managing reliable data streams: re-transmitted message serial number managed by the API and re-transmitted message serial number managed by the Member System.
4.7.1. Re-Transmission Sequence ID Maintained by API
Whenever API receives a message from reliable data stream, it (a) first calls the callback function in SPI to inform the Member System; (b) then records the message Sequence ID in the local file (with file extension “.con”). If the Member system re-subscribes datastream after its logout, then the message sequence ID recorded in the local file can be used for subscription of the data stream.
SubscribePrivateTopic, SubscribePublicTopic, and SubscribeUserTopic from CShfeFtdcTraderApi and SubscribeMarketDataTopic from CShfeFtdcMduserApi are used to subscribe to reliable data streams.
Retransmission mode can be designated via interface parameter, which is classified into three modes, namely, RESTART (retransmission), RESUME (resuming of a transmission) and QUICK (snapshot).
· RESTART mode starts the re-transmission from the 1st message in the stream,and in this case, the message Sequence ID recorded in the local file is ignored
· RESUME mode starts the re-transmission following the Sequence ID recorded in the local file. If it is a quotation stream, the current quotation snapshot of each contract with the particular topic would be transmitted first, and then the quotation transmission is started from a specified Sequence ID. In order to maintain the integrity of members’ trading data, SHFE recommends the “RESUME” mode for the private stream of the member or the trader.

· QUICK mode starts the re-transmission at the maximum Sequence ID at the moment of subscribing the data stream. If it is a quotation stream, the current quotation snapshot of each contract/instrument with the particular topic would be transmitted first. The QUICK mode is mainly used for occasions in which there are no need to guarantee the data integrity, such as quick receiving and resuming of quotation after breakdown of communication or software. As for the member's or trader's private stream, SHFE does not recommend the use of QUICK method.
A certain degree of data inconsistency risk exists in the situation where the re-transmission Sequence ID is maintained by the API. For example, if (a) is done while (b) is incomplete, one message would be called back twice into the Member System, which would complicate the message processing in the Member System. Further, if the local file which records the data stream Sequence ID is spoiled, all data streams have to be re-transmitted, and this would probably affect the efficiency of the Member System.
If the API is utilized to maintain the Sequence ID of re-transmission messages, it would record the 2 fields, TradingDay and DataCenterID, which returned upon the previous login, into the file named resume.con; at the time of login, the API would use the values in the file to overwrite these 2 fields filled by Member System.
4.7.2. Re-Transmission Sequence ID Managed by Member System

Whenever the API receives a message from the reliable data stream, it (a) first calls the OnPackageStart function of the SPI to inform the Member System that a message has been received, (b) then calls the callback function of the SPI to inform the Member System of the system business/service data, (c) finally calls the OnPackageEnd function of the SPI to inform the Member System that the callback of the message is completed. From the interfaces OnPackageStart and OnPackageEnd, the Member System can obtain the Sequence ID of the current callback message, and record the Sequence ID if necessary. When re-transmitting the reliable data stream, the recorded Sequence ID would be used as the parameter for the CShfeFtdcTraderApi::ReqSubscribeTopic function (similar to the RESUME mode).
Via the CShfeFtdcTraderApi::ReqSubscribeTopic function, the Member System can specify the message Sequence ID for data stream re-transmission. If the Sequence ID is 0, the entire data stream would be re-transmitted (similar to RESTART mode); if the specified Sequence ID is -1, the message re-transmission would start from the largest Sequence ID at the moment of subscription (similar to the QUICK mode).

If the subscribed stream is the quotation stream, and if the specified re-transmission Sequence ID is not 0, the quotation snapshots for all the contracts prior to the specified Sequence ID would be transmitted. During the transmission of the quotation snapshots, the nSequenceNo parameter value for the callback function OnPackageStart and OnPackageEnd is 0.

The re-transmission Sequence ID maintained by the Member System is more consistent and reliable than that maintained by the API. This method should be used for the Member System which requires high level of transactional integrity.

Note: upon login, TradingDay and DataCenterID should be filled in as the return value from the previous login reply. If it is the first login or resuming transmission is not required, TradingDay can be set as an empty string, and DataCenterID can be filled in as 0 or the primary data center ID published by SHFE.
4.8. Heartbeat Mechanism (Heartbeat)
The TCP virtual link is used for communication between the Member System and the front-ends of the Trading System. If virtual link failure occurs, and assuming there is no data communication between Member System and the front-end during the dysfunction period, specifically, both sides do not call the functions Socket recv() and Socket send(), as a result, both sides (Member System and the Trading System) would not be able to detect the working status at that moment, and need to wait for the Socket timeout. Generally, the timeout periods defined by operating systems are relatively long, which are not conductive to perform monitoring. In this case, monitoring is used for accelerating the response speed and realizing the automatic recovery and processing.
One possible way to monitor the working status of two communicating sides is to add extra heartbeat information. The principle is quite simple and it will not incur additional cost for both sides: when there is business data transmission, both sides can detect the status of the virtual link and communication; when there is no business data transmission, the two sides need to send heartbeat messages to each other (in this case, no data is transferring along the virtual link, and hence the additional heartbeat messages will cause no pressure on bandwidth and cost as well). Although no additional communication cost required, for the server (e.g. for the front-end of the Trading System), the patrol cost (monitoring every second to find whether it is required to send heartbeat information and maintaining the connection table) would increase linearly as the number of connection increases.
Heartbeat message is added to check whether the connection is valid or not. If one side does not receive any heartbeat message within a specified timeout period, it could be considered that the TCP virtual link is invalid. In this case, this side should take the initiative to disconnect the link; if one side does not send any business message to the other side within a certain time interval, it should send heartbeat message to the other side to maintain the normal working status of the virtual link. Typically, the timeout is three times of the interval.
The API provided the void SetHeartbeatTimeout(unsigned int timeout) method Member System to set the timeout period to monitor the validity of the TCP virtual link: During idle period, the Trading System would send heartbeat message to API every (timeout-1) / 3 seconds; if no message is received from the Trading System in more than timeout/2 seconds, the callback function CShfeFtdcTraderApi :: OnHeartBeatWarning () would be triggered; if no message is received from the Trading System after timeout, TCP connection would be interrupted and the callback function CShfeFtdcTraderApi :: OnFrontDisconnected () would be triggered.
For instance, assume that the member side sets the heartbeat timeout period to be 16 seconds. The Trading System would send one heartbeat message to the API every 5 seconds during idle time. If API does not receive any message from the Trading System in 8 seconds, the callback function CShfeFtdcTraderApi :: OnHeartBeatWarning () would be triggered. If no message is received in 16 seconds, API would take the initiative to disconnect the network and trigger the callback function CShfeFtdcTraderApi :: OnFrontDisconnected (). In this case, the Member System can choose to re-connect with the front-end via alternative dedicated data link.
The front-end of SHFE also monitors the TCP connection of the Member System via the heartbeat mechanism: If Member System does not call the SetHeartbeatTimeout method, the current timeout is fixed to be 120 seconds; if the Member System calls the SetHeartbeatTimeout method, the same timeout setting would be synchronized to the front-end for monitoring Member System. This mechanism is very useful: after the link interruption, the front-end would automatically disconnect with the member-side TCP link within acceptable time (about timeout + 5 seconds), so that the Member System can use alternative line (with a different IP address) to login, otherwise, the front-end would hold that the original TCP connection is still valid and reject any login from the alternative address. This convenience is not available for the Member Systems using OFPv2; they have to wait 60-90 seconds for logging in from the alternative address.
Note:

If Member System never calls the SetHeartbeatTimeout method, prior to the version of v1.20, the default timeout is set at 120 seconds and the default warning time is set at 80 seconds. In order to accelerate the link-interruption-detection speed for Member System, from the version v1.20 and on, after the API has initialized and established TCP connection to the front-end, it would automatically call the SetHeartbeatTimeOut() method and set the timeout to be 10 seconds. The minimum value permissible for timeout parameter is 4 seconds. If the timeout parameter is set at a too high level, in the situation of link disruption, a much longer time would be taken for Member system to switch to the alternative link; if the timeout parameter is set at a too low level, unexpected switching might occur. Therefore, the timeout setting requires a comprehensive consideration among the status of the Member-side application and the status of the network.
A timeout value of 10-30 seconds is recommended for the Member System.
4.9. Front-ends List
Member System can not connect to the NGES Trading System unless it connects to SHFE's front-end first. For fault tolerance and load balance, SHFE would deploy two groups of front-ends at both the main data center and the backup data center. Each group of front-ends includes multiple computers. SHFE would publish the list of the front-ends' network addresses; The Member System can randomly choose a front-end from the list to attempt to establish connection with it. The Member System is connected exclusively to one front-end at a certain moment; if the connected front-end encounters a problem and results in connection failure or timeout, the Member System should try the other front-ends in the list.
There are two ways for Member System to obtain the front-end list:

1) SHFE announces the front-end list; The Member System registers the front-ends of the list one by one into the API via the RegisterFront interface of API.

2) The Trading System provides NameServer; it is used to publish the front-end list for the API. SHFE firstly announces the NameServer list; then the Member System registers the NameServer list into the API via the RegisterNameServer interface. The API first attempts to obtain the front-end list from the NameServer; after that it would connect to one front-end based on the front-end list.
Advantages of employing NameServer include:
· It enhances the flexibility of the front-ends’ deployment for SHFE. It can deploy additional front-ends within a short time according to business requirement and load, without making any modification to the Member System.

· NameServer provides a better way for switching between the main system and disaster recovery system
· NameServer is characterized by its unique function, simple structure and quite low load. There is no need to worry about load balancing. Hence, it can be deployed in a flexible way.
The Member System can simultaneously use the RegisterFront () method to register the front-end list, and use the RegisterNameServer () method to register the NameServer list. API would first attempt to connect to its existing registered front-end; if unsuccessful, it would try to connect the NameServer.
The flow chart for the API to connect to the front-end is as below:

[image: image6.emf]Connected

successfully

？

Randomly choose one

front-end from the Front-

end list and connect to it

Establish a

session with the

front-end

Tried all in the

front-end list ?

Yes

No

End

Yes

Start

No

Randomly choose a

NameServer from

the NameServer list

and connect to it

Yes

Connected

successfully?

Obtain the front-

end list from

NameServer

Register the

front-end list

Register NameServer

Register the front-end list

Tried all in the

NameServer list

No

Yes

Yes

No

Chart 5. The flow of the API to connect with the front-end.
4.10. Disaster Recovery Interface
SHFE has built two data centers, namely Futures Tower data center (Tower’s data center, the main data center before establishing the disaster recovery interface) and Zhangjiang data center. The two data centers use high-speed optical fiber to connect each other. The NGES Trading System runs simultaneously at the two data centers: the main center is responsible for business processing, and the backup center asynchronously receives the data from the main center and synchronizes the business with the main center; the backup center is in the standby mood.

If the main data center encounters a disastrous event, the business will be switched to the backup data center. The backup data center takes over the work of the main data center, and continues the business processing on the basis of the business processed by the main data center. During the data center switching, part of the business data might be lost. The Member System needs to know the orders to be cancelled via the API interfaces.
1) “Data Center ID” field is added to the API user login request interface to identify the data center ID of the previous login. “Data Center ID” field is also added to the user login response interface; and the Trading System would send back the currently used Data Center ID. Member System should save the Data Center ID sent back from the Trading System, and fill it into the login request at the next login.
2) The “transaction cancellation” interface (OnRtnFlowMessageCancel) is added to the API. This interface is used to notify the to-be-cancelled messages from the subscribed topic after the member side sends out the subscription request. According to this interface, the Member System can get the Sequence ID of the message that is cancelled, and thus find the original message. The Sequence ID of the original message can be obtained through the OnPackageStart and OnPackageEnd interface.
Part II. TraderAPI Reference Manual

Part II is designed for Member’s remote trading system developers, including:

Chapter 1 provided the list of the interfaces and methods that are available in TraderAPI from the view of system management and business service; also, public availability of the interfaces provided by the current version is explained.

Chapter 2 is the reference manual for TraderAPI.

Chapter 3 presents a programming example for TraderAPI.

Chapter 4 contains lists of error codes, enumeration values and data types, adopted by TraderAPI.

1. Categories of TraderAPI Interfaces
1.1 Management Interfaces
TraderAPI management interfaces control the life cycle and operating parameter of API.

	Interface Type
	Interface Name
	Explanation

	Lifecycle Management Interfaces
	CShfeFtdcTraderApi ::CreateFtdcTraderApi
	Create a TraderApi instance

	
	CShfeFtdcTraderApi ::GetVersion
	Get API version

	
	CShfeFtdcTraderApi ::Release
	Delete the instance of interface

	
	CShfeFtdcTraderApi ::Init
	Initialization

	
	CShfeFtdcTraderApi ::Join
	Wait for Interface thread to terminate

	Parameter Management Interfaces
	CShfeFtdcTraderApi ::RegisterSpi
	Register callback interface

	
	CShfeFtdcTraderApi ::RegisterFront
	Register the network address of front-end

	
	CShfeFtdcTraderApi ::RegisterNameServer
	Register the network address of NameServer

	
	CShfeFtdcTraderApi ::RegisterCertificateFile
	Load certificate

	
	CShfeFtdcTraderApi ::SetHeartbeatTimeout
	Set the timeout for heartbeat

	Subscription Interfaces
	CShfeFtdcTraderApi ::SubscribePrivateTopic
	Subscribe to private stream

	
	CShfeFtdcTraderApi ::SubscribePublicTopic
	Subscribe to public stream

	
	CShfeFtdcTraderApi ::SubscribeUserTopic
	Subscribe to trader’s stream

	Audit Log Interfaces
	CShfeFtdcTraderApi ::OpenRequestLog
	Open the request log file

	
	CShfeFtdcTraderApi ::OpenResponseLog
	Open the reply log file

	Communication Status Interfaces
	CShfeFtdcTraderSpi ::OnFrontConnected
	The method is called when communication connection with the Trading System (not logged in yet) is established.

	
	CShfeFtdcTraderSpi ::OnFrontDisconnected
	This method is called when communication with the Trading System is disconnected.

	
	CShfeFtdcTraderSpi ::OnHeartBeatWarning
	This method is called if no heartbeat message is received after a long time.

	
	CShfeFtdcTraderSpi ::OnPackageStart
	Notification for start of message callback

	
	CShfeFtdcTraderSpi ::OnPackageEnd
	Notification for end of the message callback

	Disaster Recovery Interfaces
	CShfeFtdcTraderSpi ::OnRtnFlowMessageCancel
	Notification for data stream cancellation

1.2 Service Interfaces

	Service Type
	Service
	Request Interface / Response Interface
	Data Stream

	Login/logout
	Login
	CShfeFtdcTraderApi :: ReqUserLogin

CShfeFtdcTraderSpi :: OnRspUserLogin
	N / A

	
	Logout
	CShfeFtdcTraderApi :: ReqUserLogout

CShfeFtdcTraderSpi :: OnRspUserLogout
	Dialogue Stream

	
	User Password Update
	CShfeFtdcTraderApi ::ReqUserPasswordUpdate

CShfeFtdcTraderSpi ::OnRspUserPasswordUpdate
	Dialogue Stream

	Subscription
	Topic/Theme/Subject Subscription
	CShfeFtdcTraderApi :: ReqSubscribeTopic

CShfeFtdcTraderSpi :: OnRspSubscribeTopic
	Dialogue Stream

	
	Topic/Theme/Subject Query
	CShfeFtdcMduserApi :: ReqQryTopic

CShfeFtdcMduserSpi :: OnRspQryTopic
	Query Stream

	Trading
	Order Entry
	CShfeFtdcTraderApi :: ReqOrderInsert

CShfeFtdcTraderSpi :: OnRspOrderInsert
	Dialogue Stream

	
	Order Action
	CShfeFtdcTraderApi :: ReqOrderAction

CShfeFtdcTraderSpi :: OnRspOrderAction
	Dialogue Stream

	
	Combination/Portfolio

 Order Entry
	CShfeFtdcTraderApi :: ReqCombOrderInsert

CShfeFtdcTraderSpi :: OnRspCombOrderInsert
	Dialogue Stream

	
	Price Quotation Entry
	CShfeFtdcTraderApi :: ReqQuoteInsert

CShfeFtdcTraderSpi :: OnRspQuoteInsert
	Dialogue Stream

	
	Price Quotation Action
	CShfeFtdcTraderApi :: ReqQuoteAction

CShfeFtdcTraderSpi :: OnRspQuoteAction
	Dialogue Stream

	
	Declaration entry
	CShfeFtdcTraderApi :: ReqExecOrderInsert

CShfeFtdcTraderSpi :: OnRspExecOrderInsert
	Dialogue Stream

	
	Declaration Action
	CShfeFtdcTraderApi :: ReqExecOrderAction

CShfeFtdcTraderSpi :: OnRspExecOrderAction
	Dialogue Stream

	
	Abandonment declaration insert
	CShfeFtdcTraderApi:: ReqAbandonExecOrderInsert
CShfeFtdcTraderSpi:: OnRspAbandonExecOrderInsert
	Dialogue Stream

	
	Abandonment declaration action
	CShfeFtdcTraderApi:: ReqAbandonExecOrderAction
CShfeFtdcTraderSpi:: OnRspAbandonExecOrderAction
	Dialogue Stream

	
	QuoteDemand insert
	CShfeFtdcTraderApi:: ReqQuoteDemand

CShfeFtdcTraderSpi:: OnRspQuoteDemand

CShfeFtdcTraderSpi::OnRtnQuoteDemandNotify
	Dialogue Stream

	Private Return
	Trade Return
	CShfeFtdcTraderSpi :: OnRtnTrade
	Private Stream

	
	Order Return
	CShfeFtdcTraderSpi :: OnRtnOrder
	Private Stream

	
	Combination/Portfolio

Order Return
	CShfeFtdcTraderSpi :: OnRtnCombOrder
	Private Stream

	
	Price Quotation Return
	CShfeFtdcTraderSpi :: OnRtnQuote
	Private Stream

	
	Order Execution Return
	CShfeFtdcTraderSpi :: OnRtnExecOrder
	Private Stream

	
	Order Entry Error Return
	CShfeFtdcTraderSpi :: OnErrRtnOrderInsert
	Private Stream

	
	Order Action Error Return
	CShfeFtdcTraderSpi :: OnErrRtnOrderAction
	Private Stream

	
	Combination/Portfolio Order Entry Error Return
	CShfeFtdcTraderSpi ::OnErrRtnCombOrderInsert
	Private Stream

	
	Price Quotation Entry Error Return
	CShfeFtdcTraderSpi :: OnErrRtnQuoteInsert
	Private Stream

	
	Price Quotation Action

Error Return
	CShfeFtdcTraderSpi :: OnErrRtnQuoteAction
	Private Stream

	
	Declaration Entry Error Return
	CShfeFtdcTraderSpi :: OnErrRtnExecOrderInsert
	Private Stream

	
	Declaration Action Error Return
	CShfeFtdcTraderSpi ::OnErrRtnExecOrderAction
	Private Stream

	
	Abandonment declaration return
	CShfeFtdcTraderSpi::OnRtnAbandonExecOrder
	Private Stream

	
	Abandonment declaration entry error return
	CShfeFtdcTraderSpi:: OnErrRtnAbandonExecOrderInsert
	Private Stream

	
	Abandonment declaration action error return
	CShfeFtdcTraderSpi:: OnErrRtnAbandonExecOrderAction
	Private Stream

	Public Notification
	Contract/Instrument Trading Status Notification
	CShfeFtdcTraderSpi :: OnRtnInstrumentStatus
	Public Stream

	
	Instrument Addition Notification
	CShfeFtdcTraderSpi :: OnRtnInsInstrument
	Public Stream

	
	Instrument Deletion Notification
	CShfeFtdcTraderSpi :: OnRtnDelInstrument
	Public Stream

	
	Combination Leg Entry Notification
	CShfeFtdcTraderSpi :: OnRtnInsCombinationLeg
	Public Stream

	
	Combination Leg Deletion Notification
	CShfeFtdcTraderSpi :: OnRtnDelCombinationLeg
	Public Stream

	
	Alias Definition Notification
	CShfeFtdcTraderSpi :: OnRtnAliasDefine
	Public Stream

	
	Bulletin Notification
	CShfeFtdcTraderSpi :: OnRtnBulletin
	Public Stream

	Query
	Member Cash Query
	CShfeFtdcTraderApi :: ReqQryPartAccount

CShfeFtdcTraderSpi :: OnRspQryPartAccount
	Query Stream

	
	Order Query
	CShfeFtdcTraderApi :: ReqQryOrder

CShfeFtdcTraderSpi :: OnRspQryOrder
	Query Stream

	
	Combination/Portfolio Order Query
	CShfeFtdcTraderApi :: ReqQryCombOrder

CShfeFtdcTraderSpi :: OnRspQryCombOrder
	Query Stream

	
	Price Quotation Query
	CShfeFtdcTraderApi :: ReqQryQuote

CShfeFtdcTraderSpi :: OnRspQryQuote
	Query Stream

	
	Trade Query (i.e.filled/matched order)
	CShfeFtdcTraderApi :: ReqQryTrade

CShfeFtdcTraderSpi :: OnRspQryTrade
	Query Stream

	
	Client Query
	CShfeFtdcTraderApi :: ReqQryClient

CShfeFtdcTraderSpi :: OnRspQryClient
	Query Stream

	
	Member Holding Position Query
	CShfeFtdcTraderApi :: ReqQryPartPosition

CShfeFtdcTraderSpi :: OnRspQryPartPosition
	Query Stream

	
	Client Holding Position Query
	CShfeFtdcTraderApi :: ReqQryClientPosition

CShfeFtdcTraderSpi :: OnRspQryClientPosition
	Query Stream

	
	Instrument/Contract Query
	CShfeFtdcTraderApi :: ReqQryInstrument

CShfeFtdcTraderSpi :: OnRspQryInstrument
	Query Stream

	
	Instrument/Contract Trading Status Que
	CShfeFtdcTraderApi :: ReqQryInstrumentStatus

CShfeFtdcTraderSpi ::OnRspQryInstrumentStatus
	Query Stream

	
	Hedge Volume Query
	CShfeFtdcTraderApi :: ReqQryHedgeVolume

CShfeFtdcTraderSpi :: OnRspQryHedgeVolume
	Query Stream

	
	Market Data Query
	CShfeFtdcTraderApi :: ReqQryMarketData
CShfeFtdcTraderSpi :: OnRspQryMarketData
	Query Stream

	
	Bulletin Query
	CShfeFtdcTraderApi :: ReqQryBulletin

CShfeFtdcTraderSpi :: OnRspQryBulletin
	Query Stream

	
	Instrument Price Level Query
	CShfeFtdcTraderApi :: ReqQryMBLMarketData

CShfeFtdcTraderSpi ::OnRspQryMBLMarketData
	Query Stream

	
	Order Execution Query
	CShfeFtdcTraderApi::ReqQryExecOrder

CShfeFtdcTraderSpi::OnRspQryExecOrder
	Query Stream

	
	Exchange Rate Query
	CShfeFtdcTraderApi::ReqQryExchangeRate

CShfeFtdcTraderSpi::OnRspQryExchangeRate
	Query Stream

	
	Information Query
	ShfeFtdcTraderApi::ReqQryInformation

CShfeFtdcTraderSpi::OnRspQryInformation
	Query Stream

	
	Abandonment declaration query
	CShfeFtdcTraderApi:: ReqQryAbandonExecOrder
CShfeFtdcTraderSpi:: OnRspQryAbandonExecOrder
	Query Stream

1.3 Services Not Open To Public in Current Version
	Service Type
	Service
	Request Interface / Response Interface
	Opening Status

	Trading
	Order Entry
	CShfeFtdcTraderApi ::ReqOrderInsert

CShfeFtdcTraderSpi ::OnRspOrderInsert
	Partially open

	
	Order Action
	CShfeFtdcTraderApi ::ReqOrderAction

CShfeFtdcTraderSpi ::OnRspOrderAction
	Partially open

	
	Combination/Portfolio Order Entry
	CShfeFtdcTraderApi ::ReqCombOrderInsert

CShfeFtdcTraderSpi ::OnRspCombOrderInsert
	Not open

	
	Price Quotation Entry
	CShfeFtdcTraderApi ::ReqQuoteInsert

CShfeFtdcTraderSpi ::OnRspQuoteInsert
	Not open

	
	Price Quotation Action
	CShfeFtdcTraderApi ::ReqQuoteAction

CShfeFtdcTraderSpi ::OnRspQuoteAction
	Not open

	
	Execution declaration entry
	CShfeFtdcTraderApi ::ReqExecOrderInsert

CShfeFtdcTraderSpi ::OnRspExecOrderInsert
	Not open

	
	Execution declaration Action
	CShfeFtdcTraderApi ::ReqExecOrderAction

CShfeFtdcTraderSpi ::OnRspExecOrderAction
	Not open

	
	Abandonment execution declaration entry
	CShfeFtdcTraderApi::ReqAbandonExecOrderInsert

CShfeFtdcTraderSpi::OnRspAbandonExecOrderInsert
	Not open

	
	Abandonment execution declaration action
	CShfeFtdcTraderApi::ReqAbandonExecOrderAction
CShfeFtdcTraderSpi::OnRspAbandonExecOrderAction
	Not open

	
	QuoteDemand insert
	CShfeFtdcTraderApi:: ReqQuoteDemand

CShfeFtdcTraderSpi:: OnRspQuoteDemand

CShfeFtdcTraderSpi::OnRtnQuoteDemandNotify
	Not open

	Return
	Combination/Portfolio

Order Return
	CShfeFtdcTraderSpi ::OnRtnCombOrder
	Not open

	
	Price Quotation Return
	CShfeFtdcTraderSpi ::OnRtnQuote
	Not open

	
	Order Execution Return
	CShfeFtdcTraderSpi ::OnRtnExecOrder
	Not open

	
	Combination/Portfolio Order Entry Error Return
	CShfeFtdcTraderSpi ::OnErrRtnCombOrderInsert
	Not open

	
	Price Quotation Entry Error Return
	CShfeFtdcTraderSpi ::OnErrRtnQuoteInsert
	Not open

	
	Price Quotation Action

Error Return
	CShfeFtdcTraderSpi ::OnErrRtnQuoteAction
	Not open

	
	Execution declaration entry error return
	CShfeFtdcTraderSpi ::OnErrRtnExecOrderInsert
	Not open

	
	Execution declaration action error return
	CShfeFtdcTraderSpi ::OnErrRtnExecOrderAction
	Not open

	
	Abandonment execution declaration return
	CShfeFtdcTraderSpi::OnRtnAbandonExecOrder
	Not open

	
	Abandonment execution declaration entry error return
	CShfeFtdcTraderSpi::OnErrRtnAbandonExecOrderInsert
	Not open

	
	Abandonment execution declaration action error return
	CShfeFtdcTraderSpi::OnErrRtnAbandonExecOrderAction
	Not open

	Public Notification
	Combination Leg Entry Notification
	CShfeFtdcTraderSpi ::OnRtnInsCombinationLeg
	Not open

	
	Combination Leg Deletion Notification
	CShfeFtdcTraderSpi ::OnRtnDelCombinationLeg
	Not open

	Inquiry
	Combination Order Query
	CShfeFtdcTraderApi ::ReqQryCombOrder

CShfeFtdcTraderSpi ::OnRspQryCombOrder
	Not open

	
	Order Execution Query
	CShfeFtdcTraderApi::ReqQryExecOrder

CShfeFtdcTraderSpi::OnRspQryExecOrder
	Not open

	
	Exchange Rate Query
	CShfeFtdcTraderApi::ReqQryExchangeRate

CShfeFtdcTraderApi::OnRspQryExchangeRate
	Not open

	
	Abandonment execution declaration query
	CShfeFtdcTraderApi::ReqQryAbandonExecOrder

CShfeFtdcTraderSpi::OnRspQryAbandonExecOrder
	Not open

2. TraderAPI Reference Manual
2.1 CShfeFtdcTraderSpi Interface

CShfeFtdcTraderSpi implements event notification interface. User has to derive the CShfeFtdcTraderSpi interface and writes event-handling methods to deal with the events of interest.
2.1.1. OnFrontConnected Method
After the TCP virtual link path connection between Member System and the front-end of the NGES Trading System is established, the method is called. The mentioned connection is automatically established by the API.

Function Prototype:

void OnFrontConnected()；

 Note: The fact that OnFrontConnected is called only indicates that TCP connection is successful; user must login to the Member System by himself/herself to carry out any business operation afterwards. Login failure would not callback this method.

2.1.2. OnFrontDisconnected Method

After the TCP virtual link path connection between Member System and the front-end of the NGES Trading System is broken, the method is called. In this case, API would automatically re-connect, and Member System does not need to deal with the re-connection. The automatically re-connected address may be the originally registered address or other available communication addresses that are supported by the system, which is chosen by the API.
Function Prototype:

void OnFrontDisconnected (int nReason)；

Parameter：nReason: disconnection reasons
· 0x1001 network reading failure

· 0x1002 network writing failure

· 0x2001 heartbeat receiving timeout

· 0x2002 heartbeat sending timeout

· 0x2003 error message received

2.1.3. OnHeartBeatWarning Method

This is for heartbeat timeout warning. The method is called if message is not received after a long time. Default timeout warning period is set to be 10 seconds. If the SetHeartbeatTimeout(unsigned int timeout) method is called, heartbeat timeout period can be re-set, in which case, the warning time is set to be timeout/2.

Function Prototype:

void OnHeartBeatWarning(int nTimeLapse)；

Parameter: nTimeLapse：time elapsed since the last time receiving the message (in seconds)

2.1.4. OnPackageStart Method

This is the method for notification of start of message/packets callback. After the API receives message/packet, it first calls this method, followed by the callback of the various data fields and then it calls a method for notification of end of message callback.

Function Prototype:

void OnPackageStart (int nTopicID, int nSequenceNo)；

Parameter:

nTopicID： Topic ID(e.g. private stream, public stream, quotation stream etc)
nSequenceNo：Message Sequence Number

2.1.5. OnPackageEndMethod
This is the notification for end of message/packets callback. After the API receives a message/packet, it first calls the method for notification of start of message/packet callback, followed by the callback of the various data fields and then it calls this method.

Function Prototype:

void OnPackageEnd (int nTopicID, int nSequenceNo)；
Parameters:

nTopicID： Topic ID(e.g. private stream, public stream, quotation stream etc)
nSequenceNo：Message Sequence Number

2.1.6. OnRspUserLogin Method
After Member System send out login request, and when the Trading System sends back the response, this method is called to inform the Member System whether the login is successful.

Function Prototype:

void OnRspUserLogin(

CShfeFtdcRspUserLoginField *pRspUserLogin,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameters:

pRspUserLogin：returns the address for user login information/message structure. The structure:
struct CShfeFtdcRspUserLoginField {

///trading day

TShfeFtdcDateType
TradingDay;

///successful login time

TShfeFtdcTimeType
LoginTime;

///Maximum order local ID

TShfeFtdcOrderLocalIDType
MaxOrderLocalID;

///Trading User ID

TShfeFtdcUserIDType
UserID;

///Exchange Member ID

TShfeFtdcParticipantIDType
ParticipantID;

///Trading System Name

TShfeFtdcTradingSystemNameType
TradingSystemName;

///Data Center ID

TShfeFtdcDataCenterIDType
DataCenterID;

///current length of the Member’s private stream

TShfeFtdcSequenceNoType
PrivateFlowSize;

/// Trader-specific private stream current length

TShfeFtdcSequenceNoType
UserFlowSize;
///action day
TShfeFtdcDateType ActionDay;
};

Note: if Member System maintains its own re-transmission sequence number, it should save the returned TradingDay and DataCenterID, so that these can be filled in the login request upon next login.
Note: ActionDay is an additional file. If the day when business is executed is required, ActionDay should be used. If the trading day is required, TradingDay should be used. This filed is left to be empty when the function of ActionDay is not supported by SHFE.

pRspInfo：returns the address for user response information/message. Special attention: When there are continuous successful response data, some returned value in between may be Null, but the 1st returned value would never be Null; this is the same below. Error ID 0 means successful operation; this is the same below. Response information/message structure is:
	struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	3
	Member cannot be found
	Member ID is wrong when logging in

	45
	Settlement group initialization status is incorrect
	Trading System initialization is not completed, may try later

	59
	User multiple login
	The trading user has logged in already

	60
	Wrong user ID or password
	User ID or password is wrong

	62
	User account locked
	Trading System locked the trader’s account

	64
	User is not belong to the Member
	Member ID is wrong

	65
	Wrong login IP address
	The computer used to login does not have the IP address allowed by SHFE

	100
	Wrong user type
	Non-trading user tries to log in to the Trading System

nRequestID：returns the user login request ID; this ID is specified by the user upon login
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.7. OnRspUserLogout Method

After Member System sends out logout request, the Trading System calls this method to send back the response to inform the Member System whether the logout is successful.

Function Prototype:

void OnRspUserLogout(

CShfeFtdcRspUserLogoutField *pRspUserLogout,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:

pRspUserLogout：returns the address for user logout message.

User logout message structure:

struct CShfeFtdcRspUserLogoutField {

///

TShfeFtdcUserIDType
UserID;

///Memebr ID

TShfeFtdcParticipantIDType
ParticipantID;

};
pRspInfo：returns the address for user response information. Response information structure:
	struct CShfeFtdcRspInfoField {

///ErrorID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	66
	User not logged in yet
	User has not logged in yet

	67
	Not logged in with this user ID

	User logging out is not the same as the one logged in

	68
	Not logged in with this Memebr ID

	Member logging out is not the same as the one logged in

nRequestID：returns user logout request ID; this ID is specified by the user upon logout
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.8. OnRspUserPasswordUpdate Method

This method is for the reply on user password change request. After Member System sends out password update request, the Trading System calls this method to send back the response.
Function Prototype:

void OnRspUserPasswordUpdate(

CShfeFtdcUserPasswordUpdateField *pUserPasswordUpdate,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pUserPasswordUpdate：pointer to the address for user password update structure, including the input data for user password change request. The user password update structure is:
struct CShfeFtdcUserPasswordUpdateField {

///Trading User ID

TShfeFtdcUserIDType
UserID;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

///Old password

TShfeFtdcPasswordType
OldPassword;

///New password

TShfeFtdcPasswordType
NewPassword;

};

pRspInfo：pointer to the address for response information structure. Response information structure:
	struct CShfeFtdcRspInfoField {

///ErrorID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	58
	User not match
	User requesting for password update is not the same as the user logged in

	60
	Wrong user name or password
	Password is wrong

	66
	User not log in yet
	User not log in yet

	68
	Not logged in under this Member
	Member requesting password update not same as one logged in

nRequestID：returns user password update request ID; this ID is specified upon user password update.
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.9. OnRspSubscribeTopic Method

This method is for the reply on topic/theme subscription. After Member System sends out topic subscription instruction, the Trading System calls this method to send back the response.

Function Prototype:

void OnRspSubscribeTopic (

CShfeFtdcDisseminationField *pDissemination,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pDissemination：pointer to the address for subscription topic structure, including topic subscribed and starting message sequence number. Subscription topic structure is:
struct CShfeFtdcDisseminationField {

///sequence series

TShfeFtdcSequenceSeriesType
SequenceSeries;

///sequence number

TShfeFtdcSequenceNoType
SequenceNo;
};
pRspInfo：pointer to the address for response information/message structure. Response information structure:
	struct CShfeFtdcRspInfoField {

///ErrorID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	66
	User not log in yet
	User not log in yet

nRequestID：returns the subscribed topic request ID; this ID is specified by user upon topic subscription
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.10. OnRspQryTopic Method
This method is for the reply on the query of topic. After Member System sends out topic query instruction, the Trading System calls this method to send back the response.
Function Prototype:

void OnRspQryTopic (

CShfeFtdcDisseminationField *pDissemination,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pDissemination：pointer to the address for topic query structure, including topic queried and number of messages in the topic. Topic query structure is:
struct CShfeFtdcDisseminationField {

///sequence series

TShfeFtdcSequenceSeriesType
SequenceSeries;

///sequence number

TShfeFtdcSequenceNoType
SequenceNo;
};

pRspInfo：points to the address for response information/message structure. The response information/message structure is:
	struct CShfeFtdcRspInfoField {

///ErrorID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	66
	User not log in yet
	User not log in yet

nRequestID：returns the topic query request ID; this ID is specified upon sending topic query request.
bIsLast：indicates whether current return is the last return with respect to the nRequestID.

2.1.11. OnRspError Method

This method is for error notification with respect to user request.

Function Prototype:

void OnRspError(

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

Parameters:

pRspInfo：returns the address for response information structure. The response information structure is:
struct CShfeFtdcRspInfoField {

///

TShfeFtdcErrorIDType
ErrorID;

///

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：returns the user operating request ID; this ID is specified at the time the request was sent.
bIsLast：indicates whether current return is the last return with respect to the nRequestID.

2.1.12. OnRspOrderInsert Method

This method is for the reply on the order entry. After Member System sends out order entry instruction, the Trading System calls this method to send back the response.
Function Prototype:

void OnRspOrderInsert(

CShfeFtdcInputOrderField *pInputOrder,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameter:

pInputOrder：pointer to the address of order insert structure, including input data upon submitting order insert as well as the order ID returned from the Exchange System. Note: some fields in the structure are different from that when the order is inserted, and the returned value from the Exchange System is blank.

Order Insert Structure:
struct CShfeFtdcInputOrderField {

///Order System ID; this field is returned from the Trading System

TShfeFtdcOrderSysIDType
OrderSysID;

///Exchange Member ID, not used

TShfeFtdcParticipantIDType
ParticipantID;

///Client ID, not used

TShfeFtdcClientIDType
ClientID;

///Trading User ID, not used

TShfeFtdcUserIDType
UserID;

///Contract ID/Instrument ID, not used

TShfeFtdcInstrumentIDType
InstrumentID;

///Order price type/condition, not used

TShfeFtdcOrderPriceTypeType
OrderPriceType;

///buy/sell direction, not used

TShfeFtdcDirectionType
Direction;

///combination offset flag, not used

TShfeFtdcCombOffsetFlagType
CombOffsetFlag;

///combination speculation hedge flag, not used

TShfeFtdcCombHedgeFlagType
CombHedgeFlag;

///Price, not used

TShfeFtdcPriceType
LimitPrice;

///quantity,not used

TShfeFtdcVolumeType
VolumeTotalOriginal;

///validity period type, not used

TShfeFtdcTimeConditionType
TimeCondition;

///GTD date,not used

TShfeFtdcDateType
GTDDate;

///match volume type not used

TShfeFtdcVolumeConditionType
VolumeCondition;

///minimum volume not used

TShfeFtdcVolumeType
MinVolume;

///trigger condition, not used

TShfeFtdcContingentConditionType
ContingentCondition;

///stop price,not used

TShfeFtdcPriceType
StopPrice;

///force close reasons,not used

TShfeFtdcForceCloseReasonType
ForceCloseReason;

///local order ID

TShfeFtdcOrderLocalIDType
OrderLocalID;

///automatic suspend flag, not used

TShfeFtdcBoolType
IsAutoSuspend;

///business unit, not used

TShfeFtdcBusinessUnitType
BusinessUnit;

///local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

};
pRspInfo：pointer to the address for response information structure. The structure:
	struct CShfeFtdcRspInfoField {

///ErrorID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	2
	Unable to find instrument
	Unable to find the instrument in the order

	3
	Unable to find the Member
	Unable to find the Member in the order

	4
	Unable to find the client
	Unable to find the client in the order

	6
	Fields error in the order
	Certain field in the order is illegal (e.g. enumeration value is out of bound) or non-forced close order with forced close reason

	12
	Duplicated order
	Local ID in the order is duplicated

	15
	Client has no account under the exchange member
	The client in the order has no account under the specified member

	16
	IOC has to be with the continuous trading session
	IOC (immediately-or-cancel) order is tried to be entered at non-continuous trading session

	17
	GFA has to be with the auction session
	GFA order is tried to be entered at non-auction session

	18
	Market order unable to queue
	The time condition of market order is not IOC

	19
	Volume restriction should be with IOC order
	The order whose volume restriction is not arbitrary does not have the IOC time condition

	20
	GTD order is expired
	The GTD date in the GTD order is expired

	21
	The minimum volume is greater than the order volume
	The order has minimum volume condition, but the order volume is less than this minimum volume

	22
	SHFE data is not synchronized
	The Trading System is not completely initialized, try later

	23
	Settlement group data is not synchronized
	Initialization of the Trading System is incomplete, try later

	26
	This operation is forbidden under current status
	The trading status of the instrument is not continuous-trading or auction or auction balance

	31
	Client holding position is not enough when close position
	Client holding position is not enough while entering close order

	32
	Client’s position limit is exceeded
	When entering open position order, the client’s speculation limit position is exceeded

	34
	Member’s position limit is exceeded
	When entering open position order, the member’s limit position is exceeded

	35
	Unable to find account
	Unable to find the cash account used in the order

	36
	Cash not enough
	There is not enough cash in the cash account

	37
	Illegal volume
	Order volume is not an integer multiple of the minimum volume, or exceeds the maximum order volume

	48
	Price is not an integer multiple of the minimum unit
	Order price is not an integer multiple of the minimum variable price unit

	49
	Price exceeds limit up
	Order price exceed the upper limit of the instrument

	50
	Price falls below limit down
	Order price lower than the lower limit of the instrument

	51
	No trading rights
	Member, client or trader no rights to trade specified instrument/contract

	52
	Open position only
	Member, client or trader only have rights to open position

	53
	No such trading role
	Member has no trading role with the client in the specified order

	57
	Unable to operate for other members
	Trader trying to operate for other members that he is not working for

	58
	User not match
	Trader in the order and trader upon login not match

	66
	User not logged in
	User not logged in yet

	78
	GTD date not set in the GTD order
	GTD order does not specify the GTD date

	79
	Order type not supported
	SHFE does not support this type of order

	83
	Stop loss order is only used for continuous trading
	Stop loss order is entered in non-continuous trading session

	84
	Stop loss order has to be IOC/GFD
	Time condition is neither IOC nor GFD at stop loss order

	95
	Stop loss order should specify stop price
	The stop loss order does not specify stop price

	96
	Hedging amount not enough
	When entering hedging order, client hedge amount is not enough

	103
	Hedging position unable to close within the same day
	Hedging position should not use close-today-position order to close the position

	114
	Best price order unable to queue
	Best price order time condition is not IOC

nRequestID：returns order insert operating request ID; this ID is specified by user upon Order Entry.
bIsLast：indicates whether current return is the last return with respect to the nRequestID.
Note：

CShfeFtdcRspInfoField.ErrorID is 0 implies that current order entry is successful. In ShfeFtdcInputOrderField *pInputOrder, only order ID (the system ID given by the Trading System) and local order ID are meaningful, which are used to relate the order between the Trading System and Member System. The detailed content of the order should be obtained from private stream.
Please refer to OnRtnOrder method for the description of each data field in CShfeFtdcInputOrderField.
2.1.13. OnRspOrderAction Method
Not supported in the current version.

This method is used to response to order operations, which includes order cancellation, order suspension, order activation and order modification. When member system sent an order for order operation and trading system needs to returne a response, this method will be called.

Function prototype：

void OnRspOrderAction(

CShfeFtdcOrderActionField *pOrderAction,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameters：
pOrderAction：Address pointing to order operation structure, including the input data when an order in submitted as well as the order number returned from the Trading system. Note: if some field in the structure is different from that at time of order input, the return from the Trading System is a null value. Order operation structure:

struct CShfeFtdcOrderActionField {

/// Order No.

TShfeFtdcOrderSysIDType
OrderSysID;

/// Local Order No.

TShfeFtdcOrderLocalIDType
OrderLocalID;

///Flag of Order operation

TShfeFtdcActionFlagType
ActionFlag;

///Member's code,not used

TShfeFtdcParticipantIDType
ParticipantID;

///Client's code, not used

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Price,not used

TShfeFtdcPriceType
LimitPrice;

/// Change in quantity, not used

TShfeFtdcVolumeType
VolumeChange;

/// Operation of local No.

TShfeFtdcOrderLocalIDType
ActionLocalID;

///Business unit,not used

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to response message structure. Response message structure:
	struct CShfeFtdcRspInfoField {

///ErrorID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	3
	Member cannot be found
	Member cannot be found in the order operation

	4
	Client cannot be found
	Client cannot be found in the order operation

	8
	Error field in the order operation
	Illegal field values in the order operation (out-of-range of the enumerated value).

	15
	Client didn't open an account at this member
	Client didn't open an account at the designated member

	22.
	The exchange's data is not in the synchronized state
	Initialization of trading system is not completed, please try later.

	23
	The settlement group's data is not in synchronized date
	Initialization of trading system is not completed, please try later.

	24.
	Order cannot be found
	Order to be operated cannot be found

	26.
	This operation is prohibited by current state
	As for activation of operation, the contract's trading status is not the continuous trade, call auction order or call auction balancing

As for other operation, the trading status is not the continuous trade or call auction order

	28
	Order has already been fulfilled
	Order has already been fulfilled

	29
	Order has already been cancelled
	Order has already been cancelled

	32
	Exceeding client's position limit
	Exceeding the client's speculative position limit when modifying the order

	34
	Exceeding member's position limit
	Exceeding the member's position limit when modifying the order

	35.
	Account cannot be found
	The capital account shall be used cannot be found

	36
	Inadequate fund
	No sufficient funds in capital account

	37.
	Illegal quantity
	The number of order is not the positive integral multiple as required the Min. number of order or exceeds the Max. number of order

	48
	The price is not the integral multiple of the Min. unit
	Price of order after modification is not the integral multiple of the contract's tick size

	49.
	Price exceeds the upward limit
	Price of order after modification is higher than the contract's upward price limit

	50
	Price exceeds the downward limit
	Price of order after modification is lower than the contract's downward price limit

	57
	Operation shall not be conducted by other members
	Trader conducts operation on behalf of member to whom he is not subordinate.

	58
	Unmatched user
	Trader in the order operation doesn't match with trader at the time of login

	66
	User hasn't logged in yet
	User hasn't logged in yet

	76
	Order has already been suspended
	Order has already been suspended when order is suspended.

	77
	Order has already been activated
	Order has already been activated when order is activated.

	96
	Insufficient hedge quota
	The client's hedge quota is insufficient when modifying the order

	97
	duplicate operation
	Local operation No. in order operation is not unique.

	99
	Operation shall not be conducted by other users
	Unauthorized trader operates order submitted by other traders of the same member

nRequestID：ID for return to request for user's order operation. This ID will be designated at the time of order operation.

bIsLast：Indicating whether or not this return is the last return regarding nRequestID.

2.1.14. OnRspQuoteInsert Method
Not available in this version.

This method is used to response to quote entry. When member system gave the instructions for entry of order and trading system returned a response, this method will be called.

Function prototype：

void OnRspQuoteInsert(

CShfeFtdcInputQuoteField *pInputQuote,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameters：
pInputQuote：Address pointing to the input quote sturcture, including the input data of quote entry operation and the quote No. returned from trading system. The input quote structure:

struct CShfeFtdcInputQuoteField {

///Quote No.

TShfeFtdcQuoteSysIDType
QuoteSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

/// Transaction user's code

TShfeFtdcUserIDType
UserID;

/// Quantity

TShfeFtdcVolumeType
Volume;

///Contact code

TShfeFtdcInstrumentIDType
InstrumentID;

/// Local quote No.

TShfeFtdcQuoteLocalIDType
QuoteLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Flag of position opening and closing-out in buyer's portfolio

TShfeFtdcCombOffsetFlagType
BidCombOffsetFlag;

///Flag of hedge in buyer's portfolio

TShfeFtdcCombHedgeFlagType
BidCombHedgeFlag;

///Buyer's price

TShfeFtdcPriceType
BidPrice;

///Flag of position opening and closing-out in seller's portfolio

TShfeFtdcCombOffsetFlagType
AskCombOffsetFlag;

///Flag of hedge in seller's portfolio

TShfeFtdcCombHedgeFlagType
AskCombHedgeFlag;

///Seller's price

TShfeFtdcPriceType
AskPrice;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to the response message structure. Response message structure:
	struct CShfeFtdcRspInfoField {

///ErrorID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	2
	Contract cannot be found
	Contract cannot be found in the quote.

	3
	Member cannot be found
	Member cannot be found in the quote

	4
	Client cannot be found
	Client cannot be found in the quote

	8
	Error field in the quote
	Illegal field values in the quote (out-of-range of the enumerated value).

	13
	duplicate quote
	duplicate local quote No. in the quote

	15
	Client didn't open an account at this member
	Client in the quote didn't open an account at the designated member

	22.
	The exchange's data is not in the synchronized state
	Initialization of trading system is not completed, please try later.

	23
	The settlement group's data is not in synchronized date
	Initialization of trading system is not completed, please try later.

	26.
	This operation is prohibited by current state
	The contract's trading status is not the continuous trade, call auction order or call auction balancing

As for other operation, the trading status is not the continuous trade or call auction order

	31.
	The client's open interest is insufficient at the time of closing-out
	The client's open interest is insufficient

	32
	Exceeding client's position limit
	This quote caused the client's speculative position exceeding position limit

	34
	Exceeding member's position limit
	This quote caused the member's open interest exceeding position limit

	35.
	Account cannot be found
	The capital account used for quotation cannot be found

	36
	Inadequate fund
	No sufficient funds in capital account

	37.
	Illegal quantity
	The number of order is not the positive integral multiple as required by the Min. number of order or exceeds the Max. number of order

	48
	The price is not the integral multiple of the Min. unit
	The quoted price is not the integral multiple of the contract's tick size

	49.
	Price exceeds the upward limit
	The quoted price is higher than the contract's upward price limit

	50
	Price exceeds the downward limit
	The quoted price is lower than the contract's downward price limit

	51
	Not authorized to trade
	Not authorized to trade in the designated contract, or client or trader is not authorized to trade in the designated contract

	52
	Only can close out position
	As for the designated contract, member, client or trader is authorized to close out position only.

	53.
	No such trading role
	On the designated contract, member doesn't has the trading role corresponding to such client

	57
	Operation shall not be conducted by other members
	Trader conducts operation on behalf of member to whom he is not subordinate.

	58
	Unmatched user
	Trader in the quote doesn't match with trader at the time of login

	66
	User hasn't logged in yet
	User hasn't logged in yet

	79
	Order type that is not supported
	The Exchange does not support this order type.

	96
	Insufficient hedge quota
	The client's hedge quota is insufficient when submitting the hedging quota

	103.
	Today's hedge positions can be closed out
	The hedge positions cannot be closed out using the quote for closing out position on that day

nRequestID：ID for return to user's request for quote entry operation. This ID will be designated at the time of quote entry.

bIsLast：Indicating whether or not this return is the last return regarding nRequestID.

2.1.15. OnRspQuoteAction Method
Not available in this version.
This function is used to response to quote operation, including cancellation of quote, suspension of quote, activation of quote and modification to quote. When member system gave the instuctions for quote operation and trading system returned a response, this method will be called.
Function prototype：

void OnRspQuoteAction(

CShfeFtdcQuoteActionField *pQuoteAction,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

Parameters：
pQuoteAction：Address pointing to quote operation structure, including the input data of request for quote operation and quote No. returned from trading system. Quote operation structure:

struct CShfeFtdcQuoteActionField {

///Quote No.

TShfeFtdcQuoteSysIDType
QuoteSysID;

///Local quote No.

TShfeFtdcOrderLocalIDType
QuoteLocalID;

///Flag of order operation

TShfeFtdcActionFlagType
ActionFlag;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Local No. of operation

TShfeFtdcOrderLocalIDType
ActionLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to response message structure. Response message structure:
	struct CShfeFtdcRspInfoField {

///ErrorID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	3
	Member cannot be found
	Member cannot be found in the quote operation

	4
	Client cannot be found
	Client cannot be found in the quote operation

	8
	Error field in the quote operation
	Illegal field values in the quote operation (out-of-range of the enumerated value).

	15
	Client didn't open an account at this member
	Client didn't open an account at the designated member

	22.
	The exchange's data is not in the synchronized state
	Initialization of trading system is not completed, please try later.

	23
	The settlement group's data is not in synchronized date
	Initialization of trading system is not completed, please try later.

	25.
	Quote cannot be found
	Quote to be operated cannot be found

	26.
	This operation is prohibited by current state
	As for activation of operation, the contract's trading status is not the continuous trade, call auction order or call auction balancing

As for other operations, the trading status is not the continuous trade or call auction order

	28
	Order has already been fulfilled
	Order derived from quote has already been fulfilled

	35
	Account cannot be found
	The capital account shall be used cannot be found

	36
	Inadequate fund
	No sufficient funds in capital account

	57
	Operation shall not be conducted by other members
	Trader conducts operation on behalf of member to whom he is not subordinate.

	58
	Unmatched user
	Trader in the quote operation doesn't match with trader at the time of login

	66
	User hasn't logged in yet
	User hasn't logged in yet

	70
	Quote has already been cancelled
	Quote has already been cancelled

	97
	duplicate operation
	Local operation No. in the quote operation is not unique.

	99
	Operation shall not be conducted by other users
	Unauthorized trader operates the quote submitted by other traders of the same member

nRequestID：ID for return to user's request for quote operation. This ID will be designated by user at the time of quote operation

bIsLast：Indicating whether or not this return is the last return regarding nRequestID.

2.1.16. OnRspExecOrderInsert Method
Not available in this version.
This method is used to response to execution declaration entry. When member system executed the entry of declaration and trading system returned a response, this method will be called.
Function prototype：

void OnRspExecOrderInsert(

CShfeFtdcInputExecOrderField *pInputExecOrder,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID, bool bIsLast)；
Parameters：
pInputExecOrder：Address pointing to the declaration entry structure. Structure of execution declaration entry:

struct CShfeFtdcInputExecOrderField {

/// Contract No.

TShfeFtdcInstrumentIDType
InstrumentID;

/// Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

/// Local execution declaration No.

TShfeFtdcOrderLocalIDType
ExecOrderLocalID;

///Quantity

TShfeFtdcVolumeType
Volume;

/// Offset flag

TShfeFtdcOffsetFlagType
OffsetFlag;

/// Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

/// position direction, i.e. whether buyer(long position) or seller(short position) made this application

TShfeFtdcPosiDirectionType
PosiDirection;

/// flag for whether position is reserved after option exercrised

TShfeFtdcExecOrderPositionFlagType
ReservePositionFlag;

/// flag for whether position is closed automatically after option exercrised

TShfeFtdcExecOrderCloseFlagType CloseFlag;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to response message structure. Response message structure:
	struct CShfeFtdcRspInfoField {

///ErrorID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
Possible errors are listed as below:

	Error ID
	Error message
	Possible reason

	2
	Contract cannot be found
	Contract cannot be found in the execution declaration.

	3
	Member cannot be found
	Member cannot be found in the execution declaration

	4
	Client cannot be found
	Client cannot be found in the execution declaration

	15
	Client didn't open an account at this member
	Client in the in the execution declaration didn't open an account at the designated member

	22
	The exchange's data is not in the synchronized state
	Initialization of trading system is not completed, please try later.

	23
	The settlement group's data is not in synchronized date
	Initialization of trading system is not completed, please try later.

	26
	This operation is prohibited by current state
	Tthe contract's trading status is in the closing state

	51
	Not authorized to trade
	Not authorized to trade in the designated contract, or client or trader is not authorized to trade in the designated contract

	52
	Only can close out position
	As for the designated contract, member, client or trader is authorized to close out position only.

	53
	No such trading role
	On the designated contract, member doesn't has the trading role corresponding to such client

	57
	Operation shall not be conducted by other members
	Trader conducts operation on behalf of member to whom he is not subordinate.

	58
	Unmatched user
	Trader in the execution declaration doesn't match with trader at the time of login

	66
	User hasn't logged in yet
	User hasn't logged in yet

	79
	Order type that is not supported
	The Exchange does not support this order type.

	89
	Error field in the execution of declaration operation
	Illegal field values in the execution of declaration operation (out-of-range of the enumerated value).

	91
	duplicate execution declaration
	The local announcment execution No. in execution declaration is not unique.

	94
	Execution declaration is only used in option
	The contract in execution declaration is non-option contract

nRequestID：ID for return to request for execution declaration entry. This ID will be designated by user at the time of execution declaration entry.

bIsLast：Indicating whether or not this return is the last return regarding nRequestID.

2.1.17. OnRspExecOrderAction Method
This method is not available in this version.
Response to execution of annoncement operation. When member system executed the declaration operation and trading system returned a response, this method will be called.
Function prototype：

void OnRspExecOrderAction(

CShfeFtdcExecOrderActionField *pExecOrderAction,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

Parameters：
pInputExecAction：Address pointing to declaration operation structure. Declaration operation structure:

struct CShfeFtdcExecOrderActionField {

///Execution declaration No.

TShfeFtdcExecOrderSysIDType
ExecOrderSysID;

///Local annoncement execution No.

TShfeFtdcOrderLocalIDType
ExecOrderLocalID;

///Flag of order operation

TShfeFtdcActionFlagType
ActionFlag;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Operation of local No.

TShfeFtdcOrderLocalIDType
ActionLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to response message structure. Response message structure:

	struct CShfeFtdcRspInfoField {
/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors

	Error code
	Error message
	Possible reasons

	2
	Contract cannot be found
	Contract cannot be found in the execution declaration.

	3
	Member cannot be found
	Member cannot be found in the execution declaration

	4
	Client cannot be found
	Client cannot be found in the execution declaration

	15
	Client didn't open an account at this member
	Client in the in the execution declaration didn't open an account at the designated member

	22.
	The exchange's data is not in the synchronized state
	Initialization of trading system is not completed, please try later.

	23
	The settlement group's data is not in synchronized date
	Initialization of trading system is not completed, please try later.

	26.
	This operation is prohibited by current state
	Tthe contract's trading status is in the closing state

	51
	Not authorized to trade
	Not authorized to trade in the designated contract, or client or trader is not authorized to trade in the designated contract

	53.
	No such trading role
	On the designated contract, member doesn't has the trading role corresponding to such client

	57
	Operation shall not be conducted by other members
	Trader conducts operation on behalf of member to whom he is not subordinate.

	58
	Unmatched user
	Trader in the execution declaration doesn't match with trader at the time of login

	66
	User hasn't logged in yet
	User hasn't logged in yet

	79
	Order type that is not supported
	The Exchange does not support this order type.

	90
	Error field in the execution of declaration opration
	Illegal field values in the execution of declaration operation (out-of-range of the enumerated value).

	92
	The execution of declaration has been cancelled
	The declaration operation to be executed has been cancelled.

	93
	The execution of declaration can not be found
	The declaration operation to be executed cann not be found

	97
	duplicate operation
	The local operation No. of the execution of declaration operation is not unique.

nRequestID：ID for return to request for exectution of declaration operation. This ID will be designated by user at the time of execution of declaration operation.

bIsLast：Indicating whether or not this return is the last return regarding nRequestID.
2.1.18. OnRspQryPartAccount Method
This method is the responese to query for member' funds. When member system gave the instructions to query for member's funds and trading system returned a response, this method will be called.
Function prototype：

void OnRspQryPartAccount(

CShfeFtdcRspPartAccountField *pRspPartAccount,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameters：
pRspPartAccount：Address pointing to structure of response to member's funds. Structure of response to member's funds:

struct CShfeFtdcRspPartAccountField

{

/// Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///Reserve funds for previous settlement

TShfeFtdcMoneyType
PreBalance;

///Total margin at present

TShfeFtdcMoneyType
CurrMargin;

///Profit & loss on closing-out of position

TShfeFtdcMoneyType
CloseProfit;

///Income and expense from option premium

TShfeFtdcMoneyType
Premium;

///Deposit amount

TShfeFtdcMoneyType
Deposit;

///Withdrawal amount

TShfeFtdcMoneyType
Withdraw;

/// Reserve funds for futures settlement

TShfeFtdcMoneyType
Balance;

///Withdrawable funds

TShfeFtdcMoneyType
Available;

/// Capital account

TShfeFtdcAccountIDType
AccountID;

///Frozen margin

TShfeFtdcMoneyType
FrozenMargin;

///Frozen premium

TShfeFtdcMoneyType
FrozenPremium;

///Basic reserve funds

TShfeFtdcMoneyType
BaseReserve;

};

pRspInfo： Address pointing to response message structure. Response message structure:

	struct CShfeFtdcRspInfoField {
/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors

	Error code
	Error message
	Possible reasons

	80
	User is not authorized to do so
	Only the conditions under this member can be queried.

	57
	Operation cannot be conducted by other members
	The conditions under other members cannot be queried.

nRequestID：returns user request ID for user’s query for funds; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.19. OnRspQryOrder Method

This method is for order query request. After Member System sends out order query instruction and while the Trading System sends back the response, this method is called.
Function Prototype:

void OnRspQryOrder(

CShfeFtdcOrderField *pOrder,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pOrder：points to the address for order information/message structure. The structure:
struct CshfeFtdcOrderField {

///Trading Date

TShfeFtdcDateType
TradingDay;

///Settlement Group ID

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement ID

TShfeFtdcSettlementIDType
SettlementID;

///Order ID

TShfeFtdcOrderSysIDType
OrderSysID;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

///Client ID

TShfeFtdcClientIDType
ClientID;

///Trading User ID

TShfeFtdcUserIDType
UserID;

///Instrument/contract ID

TShfeFtdcInstrumentIDType
InstrumentID;

///Order Price Type

TShfeFtdcOrderPriceTypeType
OrderPriceType;

///buy-sell direction

TShfeFtdcDirectionType
Direction;

///Combo open-close position flag

TShfeFtdcCombOffsetFlagType
CombOffsetFlag;

///Combo speculative hedge flag

TShfeFtdcCombHedgeFlagType
CombHedgeFlag;

///Price

TShfeFtdcPriceType
LimitPrice;

///Volume

TShfeFtdcVolumeType
VolumeTotalOriginal;

///Expiry Type

TShfeFtdcTimeConditionType
TimeCondition;

///GTD Date, NOT USED

TShfeFtdcDateType
GTDDate;

///Match volume condition type

TShfeFtdcVolumeConditionType
VolumeCondition;

///Minimum Volume

TShfeFtdcVolumeType
MinVolume;

///Trigger/Contingent Condition

TShfeFtdcContingentConditionType
ContingentCondition;

///Stop loss Price, NOT USED

TShfeFtdcPriceType
StopPrice;

///Forced close reasons

TShfeFtdcForceCloseReasonType
ForceCloseReason;

///Local order ID

TShfeFtdcOrderLocalIDType
OrderLocalID;

///Auto Suspend flag

TShfeFtdcBoolType
IsAutoSuspend;

///Order Source

TShfeFtdcOrderSourceType
OrderSource;

///Order Status

TShfeFtdcOrderStatusType
OrderStatus;

///Order Type

TShfeFtdcOrderTypeType
OrderType;

///Today’s trade volume

TShfeFtdcVolumeType
VolumeTraded;

///Remaining volume

TShfeFtdcVolumeType
VolumeTotal;

///order date

TShfeFtdcDateType
InsertDate;

///Entry time

TShfeFtdcTimeType
InsertTime;

///activation time, NOT USED

TShfeFtdcTimeType
ActiveTime;

///Suspension time, NOT USED

TShfeFtdcTimeType
SuspendTime;

///Last amendment time

TShfeFtdcTimeType
UpdateTime;

///Cancellation time

TShfeFtdcTimeType
CancelTime;

///Last modified trading user ID

TShfeFtdcUserIDType
ActiveUserID;

///Priority, NOT USED

TShfeFtdcPriorityType
Priority;

///Sequence number by time order, NOT USED

TShfeFtdcTimeSortIDType
TimeSortID;

///Settlement member ID, NOT USED

TShfeFtdcParticipantIDType
ClearingPartID;

///Business unit, NOT USED

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

///Action day

TShfeFtdcDateType ActionDay;
};
pRspInfo: points to the address for response information/message structure. The structure:
	struct CShfeFtdcRspInfoField {
/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors

	Error code
	Error message
	Possible reasons

	80
	User is not authorized to do so
	Only the conditions under this member can be queried.

	57
	Operation cannot be conducted by other members
	The conditions under other members cannot be queried.

nRequestID：returns user request ID for order query; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.20. OnRspQryQuote Method

Not available in this version.

This function is the response to query for quote. When member system gave the instructions to query for quote and trading system returned a response, this method will be called.

Function prototype：

void OnRspQryQuote(

CShfeFtdcQuoteField *pQuote,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameters：
pQuote：Address pointing to quote message structure. Quote message structure：
struct CShfeFtdcQuoteField {

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///Quote No.

TShfeFtdcQuoteSysIDType
QuoteSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Quantity

TShfeFtdcVolumeType
Volume;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Local quote No.

TShfeFtdcQuoteLocalIDType
QuoteLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Flag of position opening and closing-out in buyer's portfolio

TShfeFtdcCombOffsetFlagType
BidCombOffsetFlag;

///Flag of hedge in buyer's portfolio

TShfeFtdcCombHedgeFlagType
BidCombHedgeFlag;

///Buyer's price

TShfeFtdcPriceType
BidPrice;

///Flag of position opening and closing-out in seller's portfolio

TShfeFtdcCombOffsetFlagType
AskCombOffsetFlag;

///Flag of hedge in seller's portfolio

TShfeFtdcCombHedgeFlagType
AskCombHedgeFlag;

///Seller's price

TShfeFtdcPriceType
AskPrice;

///Entry Time

TShfeFtdcTimeType
InsertTime;

///Time of cancelation

TShfeFtdcTimeType
CancelTime;

///Transaction time

TShfeFtdcTimeType
TradeTime;

///Buyer's order No.

TShfeFtdcOrderSysIDType
BidOrderSysID;

///Seller's order No.

TShfeFtdcOrderSysIDType
AskOrderSysID;

///Settlement member's No.

TShfeFtdcParticipantIDType
ClearingPartID;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

///Action day

TShfeFtdcDateType ActionDay;
};

Note: ActionDay is an additional field. If the day when business is executed is required, ActionDay should be used. If the trading day is required, TradingDay should be used. This filed is set to be empty when the function of ActionDay is not supported by SHFE.

pRspInfo：Address pointing to response message structure. Response message structure:
	struct CShfeFtdcRspInfoField {
/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message
TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors

	Error code
	Error message
	Possible reasons

	80
	User is not authorized to do so
	Only the conditions under this member can be queried.

	57
	Operation cannot be conducted by other members
	The conditions under other members cannot be queried.

nRequestID：User's request ID for quote query. This ID will be designated by user at time of query for quote.

bIsLast：Indicating whether or not this return is the last return regarding nRequestID.

2.1.21. OnRspQryTrade Method
This method is for the reply on matched order/ trade query. After Member System sends out matched order (i.e. trade) query instruction and while the Trading System sends back the response, this method is called.
Function Prototype:

void OnRspQryTrade(

CShfeFtdcTradeField *pTrade,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pTrade：pointer to the address for matched order information structure. The Structure:
struct CShfeFtdcTradeField {

///Trading Date

TShfeFtdcDateType
TradingDay;

///Settlement Group ID

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement ID

TShfeFtdcSettlementIDType
SettlementID;

///Matched order ID

TShfeFtdcTradeIDType
TradeID;

///Buy-Sell direction

TShfeFtdcDirectionType
Direction;

///Order ID

TShfeFtdcOrderSysIDType
OrderSysID;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

///Client ID

TShfeFtdcClientIDType
ClientID;

///Trading Role

TShfeFtdcTradingRoleType
TradingRole;

///Cash Account

TShfeFtdcAccountIDType
AccountID;

///Instrument/Contract ID

TShfeFtdcInstrumentIDType
InstrumentID;

///Open-Close position flag

TShfeFtdcOffsetFlagType
OffsetFlag;

///Speculative hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

///Price

TShfeFtdcPriceType
Price;

///Volume

TShfeFtdcVolumeType
Volume;

///Trade time / order matching time

TShfeFtdcTimeType
TradeTime;

///Trade Type / order matching type

TShfeFtdcTradeTypeType
TradeType;

///Trade Price Source / Order Matching Price Source

TShfeFtdcPriceSourceType
PriceSource;

///Trading User ID

TShfeFtdcUserIDType
UserID;

///Local Order ID

TShfeFtdcOrderLocalIDType
OrderLocalID;

///Settlement Member ID

TShfeFtdcParticipantIDType
ClearingPartID;

///Business Unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

///Action day

TShfeFtdcDateType ActionDay;
};
pRspInfo: points to the address for response information/message structure. The structure:
	struct CShfeFtdcRspInfoField {
/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors

	Error code
	Error message
	Possible reasons

	80
	User is not authorized to do so
	Only the conditions under this member can be queried.

	57
	Operation cannot be conducted by other members
	The conditions under other members cannot be queried.

nRequestID：returns user request ID for matched order query; this ID is specified by the user upon sending cash query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.22. OnRspQryClient Method

This method is for the reply on member client query. After Member System sends out client query instruction and while the Trading System sends back the response, this method is called.

Function Prototype:

void OnRspQryClient(

CShfeFtdcRspClientField*pClient,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameter:
pClient: points to the address for client information/message structure. The structure:
struct CShfeFtdcRspClientField {

///Client ID

TShfeFtdcClientIDType
ClientID;

///Client name

TShfeFtdcPartyNameType
ClientName;

///ID Type

TShfeFtdcIdCardTypeType
IdentifiedCardType;

///Original ID

TShfeFtdcIdentifiedCardNoV1Type
UseLess;

///Trading Role

TShfeFtdcTradingRoleType
TradingRole;

///Client type

TShfeFtdcClientTypeType
ClientType;

///Active or not flag

TShfeFtdcBoolType
IsActive;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

///ID Number

TShfeFtdcIdentifiedCardNoType
IdentifiedCardNo;

};
pRspInfo：points to the address for the response information/message structure. The structure:
	struct CShfeFtdcRspInfoField {
/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors

	Error code
	Error message
	Possible reasons

	80
	User is not authorized to do so
	Only the conditions under this member can be queried.

	57
	Operation cannot be conducted by other members
	The conditions under other members cannot be queried.

nRequestID: returns user request ID for client query; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.23. OnRspQryPartPosition Method

This method is for the reply on member holding position query. After Member System sends out member holding position query instruction and while the Trading System sends back the response, this method is called.

Function Prototype:

void OnRspQryPartPosition(

CShfeFtdcRspPartPositionField *pRspPartPosition,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameter:
pRspPartPosition：points to the address for the member holding position response information/message structure. The structure:
struct CShfeFtdcRspPartPositionField {

///Trading Date

TShfeFtdcDateType
TradingDay;

///Settlement Group ID

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement ID

TShfeFtdcSettlementIDType
SettlementID;

///Speculative hedge flag

TShfeFtdcHedgeFlagType
HedgeFlag;

///Holding position over-under direction

TShfeFtdcPosiDirectionType
PosiDirection;

///Previous day holding position

TShfeFtdcVolumeType
YdPosition;

///Current day holding position

TShfeFtdcVolumeType
Position;

///Long frozen

TShfeFtdcVolumeType
LongFrozen;

///Short frozen

TShfeFtdcVolumeType
ShortFrozen;

///Previous day long frozen

TShfeFtdcVolumeType
YdLongFrozen;

///Previous day short frozen

TShfeFtdcVolumeType
YdShortFrozen;

///Contract / instrument ID

TShfeFtdcInstrumentIDType
InstrumentID;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

///Trading role

TShfeFtdcTradingRoleType
TradingRole;

};
pRspInfo：pointer to the address for response information strcture. The structure:
	struct CShfeFtdcRspInfoField {
/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors

	Error code
	Error message
	Possible reasons

	80
	User is not authorized to do so
	Only the conditions under this member can be queried.

	57
	Operation cannot be conducted by other members
	The conditions under other members cannot be queried.

nRequestID：returns user request ID for member holding position query; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.24. OnRspQryClientPosition Method

This method is for the reply on client holding position query. After Member System sends out client holding position query instruction and while the Trading System sends back the response, this method is called.

Function Prototype:

void OnRspQryClientPosition(

CShfeFtdcRspClientPositionField *pRspClientPosition,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pRspClientPosition：points to the address for the member holding position response information/message structure. The structure:
struct CShfeFtdcRspClientPositionField {

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

///Direction of long and short open interest

TShfeFtdcPosiDirectionType
PosiDirection;

///Previous-day's open interest

TShfeFtdcVolumeType
YdPosition;

///Open interest on that day

TShfeFtdcVolumeType
Position;

///Long frozen

TShfeFtdcVolumeType
LongFrozen;

///Short frozen

TShfeFtdcVolumeType
ShortFrozen;

///Long frozen of yesterday

TShfeFtdcVolumeType
YdLongFrozen;

///Short frozen of yesterday

TShfeFtdcVolumeType
YdShortFrozen;

///Buying volume on that day

TShfeFtdcVolumeType
BuyTradeVolume;

///Selling volume on that day

TShfeFtdcVolumeType
SellTradeVolume;

///Cost of carry

TShfeFtdcMoneyType
PositionCost;

///Yesterday's cost of carry

TShfeFtdcMoneyType
YdPositionCost;

///Margin used

TShfeFtdcMoneyType
UseMargin;

///Frozen Margin

TShfeFtdcMoneyType
FrozenMargin;

///Margin frozen by the long

TShfeFtdcMoneyType
LongFrozenMargin;

///Margin frozen by the short

TShfeFtdcMoneyType
ShortFrozenMargin;

///Frozen premium

TShfeFtdcMoneyType
FrozenPremium;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

};

pRspInfo：points to the address for the response information/message structure. The structure:
	struct CShfeFtdcRspInfoField {
/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors

	Error code
	Error message
	Possible reasons

	80
	User is not authorized to do so
	Only the conditions under this member can be queried.

	57
	Operation cannot be conducted by other members
	The conditions under other members cannot be queried.

nRequestID：returns user request ID for client holding position query; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.25. OnRspQryInstrument Method

This method is for the reply on instrument/contract query. After Member System sends out instrument/contract query instruction and while the Trading System sends back the response, this method is called.

Function Prototype:

void OnRspQryInstrument(

CShfeFtdcRspInstrumentField *pRspInstrument,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pRspInstrument: points to the address for instrument/contract structure. The structure:

struct CShfeFtdcRspInstrumentField {

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Product code

TShfeFtdcProductIDType
ProductID;

///Product suite's code

TShfeFtdcProductGroupIDType
ProductGroupID;

///Basic commodity code

TShfeFtdcInstrumentIDType
UnderlyingInstrID;

///Product type

TShfeFtdcProductClassType
ProductClass;

///Type of open interest

TShfeFtdcPositionTypeType
PositionType;

///Strike price

TShfeFtdcPriceType
StrikePrice;

///Option type

TShfeFtdcOptionsTypeType
OptionsType;

///Contract multiplier

TShfeFtdcVolumeMultipleType
VolumeMultiple;

///Contract multiplier for basic commodity

TShfeFtdcUnderlyingMultipleType
UnderlyingMultiple;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Contract name

TShfeFtdcInstrumentNameType
InstrumentName;

///Delivery year

TShfeFtdcYearType
DeliveryYear;

///Delivery month

TShfeFtdcMonthType
DeliveryMonth;

///Month in advance

TShfeFtdcAdvanceMonthType
AdvanceMonth;

///Is trading right now?

TShfeFtdcBoolType
IsTrading;

///Creation date

TShfeFtdcDateType
CreateDate;

///Listing day

TShfeFtdcDateType
OpenDate;

///Expiring date

TShfeFtdcDateType
ExpireDate;

///Date of starting delivery

TShfeFtdcDateType
StartDelivDate;

///The last delivery day

TShfeFtdcDateType
EndDelivDate;

///Benchmark price for listing

TShfeFtdcPriceType
BasisPrice;

///The Max. market order placement volume

///The Max. limit order placemnt volume

TShfeFtdcVolumeType
MaxLimitOrderVolume;

///The Min. limit order placement volume

TShfeFtdcVolumeType
MinLimitOrderVolume;

///Tick size

TShfeFtdcPriceType
PriceTick;

///Position opened by natural person during delvery month

TShfeFtdcMonthCountType
AllowDelivPersonOpen;
///Currency ID

TShfeFtdcCurrencyIDType CurrencyID;
};

pRspInfo：points to the address for response information/ message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：returns user request ID for contract/instrument query; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.26. OnRspQryInstrumentStatus Method

This method is for the reply on instrument/contract trading status query. After Member System sends out instrument/contract trading status query instruction and while the Trading System sends back the response, this method is called.

Function Prototype:

void OnRspQryInstrumentStatus(

CShfeFtdcInstrumentStatusField *pInstrumentStatus,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pInstrumentStatus：pointer to the address for instrument/contract trading status structure. The structure:
struct CshfeFtdcInstrumentStatusField {

///Settlement group ID

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Instrument/contract ID

TShfeFtdcInstrumentIDType
InstrumentID;

///Contract/Instrument Trading Status

TShfeFtdcInstrumentStatusType
InstrumentStatus;

///Trading Phase/Stage/Segment ID

TShfeFtdcTradingSegmentSNType
TradingSegmentSN;

///Time of entering current status

TShfeFtdcTimeType
EnterTime;

///Reason for entering current status

TShfeFtdcInstStatusEnterReasonType
EnterReason;

};
pRspInfo：points to the address for response information structure. The structure:
struct CShfeFtdcRspInfoField {

///

TShfeFtdcErrorIDType
ErrorID;

///

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：returns user request ID for contract/instrument trading status query; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.27. OnRspQryBulletin Method

This method is for the reply on the Exchange bulletin/public announcement query. After Member System sends out the query instruction for the Exchange bulletin/public announcement and while the Trading System sends back the response, this method is called.

Function Prototype:

void OnRspQryBulletin(

CShfeFtdcBulletinField *pBulletin,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pBulletin：points to the address for the Exchange bulletin/public announcement structure. The structure:
struct CShfeFtdcBulletinField {

///Business day

TShfeFtdcDateType
TradingDay;

///Bulletin No.

TShfeFtdcBulletinIDType
BulletinID;

///Sequence No.

TShfeFtdcSequenceNoType
SequenceNo;

///Bulletin type

TShfeFtdcNewsTypeType
NewsType;

///Urgency

TShfeFtdcNewsUrgencyType
NewsUrgency;

///Transmission time

TShfeFtdcTimeType
SendTime;

///Message digest

TShfeFtdcAbstractType
Abstract;

///Source of message

TShfeFtdcComeFromType
ComeFrom;

///Message body

TShfeFtdcContentType
Content;

///WEB address

TShfeFtdcURLLinkType
URLLink;

///Market code

TShfeFtdcMarketIDType
MarketID;

};

pRspInfo：points to the address for response information/ message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error ID

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：returns user request ID for the Exchange bulletin query; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.28. OnRspQryMarketData Method

This method is for the reply on general market quotation query. After Member System sends out the query instruction for market quotation and while the Trading System sends back the response, this method is called.

Function Prototype:

void OnRspQryMarketData(

CShfeFtdcMarketDataField *pMarketData,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:
pMarketData：points to the address for market quotation structure. The structure:
struct CShfeFtdcMarketDataField {

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///The latest price

TShfeFtdcPriceType
LastPrice;

///Settlement of yesterday

TShfeFtdcPriceType
PreSettlementPrice;

///Close of yesterday

TShfeFtdcPriceType
PreClosePrice;

///Yesterday's open interest

TShfeFtdcLargeVolumeType
PreOpenInterest;

///Today's open price

TShfeFtdcPriceType
OpenPrice;

///The highest price

TShfeFtdcPriceType
HighestPrice;

///The lowest price

TShfeFtdcPriceType
LowestPrice;

///Quantity

TShfeFtdcVolumeType
Volume;

///Turnover

TShfeFtdcMoneyType
Turnover;

///Open Interest

TShfeFtdcLargeVolumeType
OpenInterest;

///Today's closing

TShfeFtdcPriceType
ClosePrice;

///Today's settlement

TShfeFtdcPriceType
SettlementPrice;

///Upward limit price

TShfeFtdcPriceType
UpperLimitPrice;

///Downward limit price

TShfeFtdcPriceType
LowerLimitPrice;

///Yesterday's delta value

TShfeFtdcRatioType
PreDelta;

///Today's delta value

TShfeFtdcRatioType
CurrDelta;

///Last modification time

TShfeFtdcTimeType
UpdateTime;

///The last modified millisecond

TShfeFtdcMillisecType
UpdateMillisec;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;
///

TShfeFtdcDateType ActionDay;
};

pRspInfo：points to the address for response information/ message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：returns user request ID ; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.29. OnRspQryMBLMarketData Method

This method is for the reply on instrument/contract price query. After Member System sends out the query instruction for instrument/contract price and while the Trading System sends back the response, this method is called.

Function Prototype:

void OnRspQryMBLMarketData(

CShfeFtdcMBLMarketDataField *pMBLMarketData,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);
Parameters:
pMBLMarketData：points to the address for price list structure. The structure:
struct CShfeFtdcMBLMarketDataField {

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Buy-sell direction

TShfeFtdcDirectionType
Direction;

///Price

TShfeFtdcPriceType
Price;

///Quantity

TShfeFtdcVolumeType
Volume;

};

pRspInfo：points to the address for response information/ message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：returns user request ID ; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.30. OnRspQryHedgeVolume Method

This method is for the reply on hedge volume query. After Member System sends out the query instruction for hedge volume and while the Trading System sends back the response, this method is called.

Function Prototype:

void OnRspQryHedgeVolume(

CShfeFtdcHedgeVolumeField *pHedgeVolume,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

Parameters:
pHedgeVolume：points to the address for hedge volume structure. The structure:
struct CShfeFtdcHedgeVolumeField {

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Application for initial quantity of long hedge quota (unit: lot)

TShfeFtdcVolumeType
LongVolumeOriginal;

///Application for initial quantity of short hedge quota (unit: lot)

TShfeFtdcVolumeType
ShortVolumeOriginal;

/// Long hedge quota (unit: lot).

TShfeFtdcVolumeType
LongVolume;

/// Short hedge quota (unit: lot)

TShfeFtdcVolumeType
ShortVolume;

};

pRspInfo：pointer to the address for response information/ message structure. The structure:
	struct CShfeFtdcRspInfoField {
/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors

	Error code
	Error message
	Possible reasons

	80
	User is not authorized to do so
	Only the conditions under this member can be queried.

	57
	Operation cannot be conducted by other members
	The conditions under other members cannot be queried.

nRequestID：returns user request ID ; this ID is specified by the user upon sending query instruction.
bIsLast: indicates whether current return is the last return with respect to the nRequestID.

2.1.31. OnRtnTrade Method

Order match return / trade return: When an order is matched, i.e. when a trade is done, the Trading System would inform Member System, and this method would be called.
Function Prototype:

void OnRtnTrade(CShfeFtdcTradeField *pTrade)；

Parameter:
pTrade：pointer to the address for the match return structure. Note: some fields in match return are not used, the Trading System returns space/blank for those unused fields. The structure:
struct CShfeFtdcTradeField {

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///Transaction No.

TShfeFtdcTradeIDType
TradeID;

///Buy-sell direction

TShfeFtdcDirectionType
Direction;

///Order No.

TShfeFtdcOrderSysIDType
OrderSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Trading role,not used

TShfeFtdcTradingRoleType
TradingRole;

///Capital account,not used

TShfeFtdcAccountIDType
AccountID;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Flag of position opening and closing-out

TShfeFtdcOffsetFlagType
OffsetFlag;

///Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

///Price

TShfeFtdcPriceType
Price;

///Quantity

TShfeFtdcVolumeType
Volume;

///Transaction time

TShfeFtdcTimeType
TradeTime;

///Transaction type,not used

TShfeFtdcTradeTypeType
TradeType;

///Source of transaction price,not used

TShfeFtdcPriceSourceType
PriceSource;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Local order No.

TShfeFtdcOrderLocalIDType
OrderLocalID;

///Settlement member's No.,not used

TShfeFtdcParticipantIDType
ClearingPartID;

///Business unit,not used

TShfeFtdcBusinessUnitType
BusinessUnit;

///Business Local ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

///Action Day

TShfeFtdcDateType ActionDay;
};

2.1.32. OnRtnOrder Method
Order return: When an order is inserted, actioned or for other reasons (i.e. partial match) so that the order status changes, the Trading System would automatically inform Member System, and this method would be called.
Function Prototype:

void OnRtnOrder(CShfeFtdcOrderField *pOrder);

Parameter:
pOrder：points to the address for order return structure. Note: some fields in the order return is not used, the Trading System would return an empty/blank value for those used fields. The Structure:
struct CShfeFtdcOrderField {

///Business day,not used

TShfeFtdcDateType
TradingDay;

///Settlement group's code,not used

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.,not used

TShfeFtdcSettlementIDType
SettlementID;

///Order No.

TShfeFtdcOrderSysIDType
OrderSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Conditions of order price

TShfeFtdcOrderPriceTypeType
OrderPriceType;

///Buy-sell direction

TShfeFtdcDirectionType
Direction;

///Flag of position opening and closing-out in a portfolio

TShfeFtdcCombOffsetFlagType
CombOffsetFlag;

///Flag of speculation and hedge in a portfolio

TShfeFtdcCombHedgeFlagType
CombHedgeFlag;

///Price

TShfeFtdcPriceType
LimitPrice;

///Quantity

TShfeFtdcVolumeType
VolumeTotalOriginal;

///Type of valid period

TShfeFtdcTimeConditionType
TimeCondition;

///GTD DATE

TShfeFtdcDateType
GTDDate;

///Volume type

TShfeFtdcVolumeConditionType
VolumeCondition;

///The Min.volume

TShfeFtdcVolumeType
MinVolume;

///Trigger conditions

TShfeFtdcContingentConditionType
ContingentCondition;

///Stop-loss price

TShfeFtdcPriceType
StopPrice;

///Reasons for forced closing-out

TShfeFtdcForceCloseReasonType
ForceCloseReason;

///Local order No.

TShfeFtdcOrderLocalIDType
OrderLocalID;

///Flag of auto-suspension

TShfeFtdcBoolType
IsAutoSuspend;

///Source of order,not used

TShfeFtdcOrderSourceType
OrderSource;

///Status of order

TShfeFtdcOrderStatusType
OrderStatus;

///Type of order,not used

TShfeFtdcOrderTypeType
OrderType;

///Volume on that day,not used

TShfeFtdcVolumeType
VolumeTraded;

///Remaining quantity

TShfeFtdcVolumeType
VolumeTotal;

///Date of order

TShfeFtdcDateType
InsertDate;

///Entry time, not used

TShfeFtdcTimeType
InsertTime;

///Time of activation,not used

TShfeFtdcTimeType
ActiveTime;

///Time of suspension,not used

TShfeFtdcTimeType
SuspendTime;

///Last modification time

TShfeFtdcTimeType
UpdateTime;

///Time of cancelation,not used

TShfeFtdcTimeType
CancelTime;

///Last modification to transaction user's code

TShfeFtdcUserIDType
ActiveUserID;

///Priority,not used

TShfeFtdcPriorityType
Priority;

///Sequence No.of queue by time,not used

TShfeFtdcTimeSortIDType
TimeSortID;

///Settlement member's No.,not used

TShfeFtdcParticipantIDType
ClearingPartID;

///Business unit,not used

TShfeFtdcBusinessUnitType
BusinessUnit;

///Business Local ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

///Action Day

TShfeFtdcDateType ActionDay;
};

2.1.33. OnRtnQuote Method

Price quote return: When an order is inserted or actioned so that the price quote changes, the Trading System would automatically inform Member System, and this method would be called.
Function Prototype:

void OnRtnQuote(CShfeFtdcQuoteField *pQuote);

Parameter:
pQuote：points to the address for price quote return structure. The Structure:
struct CShfeFtdcQuoteField {

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///Quote No.

TShfeFtdcQuoteSysIDType
QuoteSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Quantity

TShfeFtdcVolumeType
Volume;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Local quote No.

TShfeFtdcOrderLocalIDType
QuoteLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Flag of position opening and closing-out in buyer's portfolio

TShfeFtdcCombOffsetFlagType
BidCombOffsetFlag;

///Flag of hedge in buyer's portfolio

TShfeFtdcCombHedgeFlagType
BidCombHedgeFlag;

///Buyer's price

TShfeFtdcPriceType
BidPrice;

///Flag of position opening and closing-out in seller's portfolio

TShfeFtdcCombOffsetFlagType
AskCombOffsetFlag;

///Flag of hedge in seller's portfolio

TShfeFtdcCombHedgeFlagType
AskCombHedgeFlag;

///Seller's price

TShfeFtdcPriceType
AskPrice;

///Entry Time

TShfeFtdcTimeType
InsertTime;

///Time of cancelation

TShfeFtdcTimeType
CancelTime;

///Transaction time

TShfeFtdcTimeType
TradeTime;

///Buyer's order No.

TShfeFtdcOrderSysIDType
BidOrderSysID;

///Seller's order No.

TShfeFtdcOrderSysIDType
AskOrderSysID;

///Settlement member's No.

TShfeFtdcParticipantIDType
ClearingPartID;

///Business Local ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

///Action Day

TShfeFtdcDateType ActionDay;
};

2.1.34. OnRtnExecOrder Method

Order execution return: The Trading System automatically informs Member System, and this method is called.

Function Prototype:

void OnRtnExecOrder(CShfeFtdcExecOrderField *pExecOrder)；

Parameter:
pExecOrder: points to the address for order execution return structure. The Structure:
struct CShfeFtdcExecOrderField {

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///Contract No.

TShfeFtdcInstrumentIDType
InstrumentID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Local No. of execution declaration

TShfeFtdcOrderLocalIDType
ExecOrderLocalID;

///Quantity

TShfeFtdcVolumeType
Volume;

/// Offset flag

TShfeFtdcOffsetFlagType
OffsetFlag;

/// Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

/// position direction, i.e. whether buyer(long position) or seller(short position) made this application

TShfeFtdcPosiDirectionType
PosiDirection;

/// flag for whether position is reserved after option exercrised

TShfeFtdcExecOrderPositionFlagType
ReservePositionFlag;

/// flag for whether position is closed automatically after option exercrised

TShfeFtdcExecOrderCloseFlagType CloseFlag;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Execution declaration No.

TShfeFtdcExecOrderSysIDType
ExecOrderSysID;

///Date of order

TShfeFtdcDateType
InsertDate;

///Entry Time

TShfeFtdcTimeType
InsertTime;

///Time of cancelation

TShfeFtdcTimeType
CancelTime;

///Execution result

TShfeFtdcExecResultType
ExecResult;

///Settlement member's No.

TShfeFtdcParticipantIDType
ClearingPartID;

///Business Local ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

///Action Day

TShfeFtdcDateType ActionDay;
};

2.1.35. OnRtnInstrumentStatus Method

Contract/Instrument return: When the instrument/contract status changes, the Trading System would automatically inform Member System, and this method would be called.
Function Prototype:

void OnRtnInstrumentStatus(

CShfeFtdcInstrumentStatusField *pInstrumentStatus);

Parameter:
pInstrumentStatus：points to the address for contract/instrument status structure. The Structure:

struct CShfeFtdcInstrumentStatusField {

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Trading status of contract

TShfeFtdcInstrumentStatusType
InstrumentStatus;

///No.of trading sessions

TShfeFtdcTradingSegmentSNType
TradingSegmentSN;

///Time of entering this status

TShfeFtdcTimeType
EnterTime;

///Reasons for entering this status

TShfeFtdcInstStatusEnterReasonType
EnterReason;

};
2.1.36. OnRtnInsInstrument Method
Notification for instrument/contract increase: After the Member System logs in successfully, the Trading System would send the increased contract in the system to the Member System via the public stream.
Function Prototype:

void OnRtnInsInstrument(CShfeFtdcInstrumentField *pInstrument)；

Parameter:
pInstrument：points to the address for contract/instrument structure. The structure:
struct CShfeFtdcInstrumentField {

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Product code

TShfeFtdcProductIDType
ProductID;

///Product suite's code

TShfeFtdcProductGroupIDType
ProductGroupID;

///Basic commodity code

TShfeFtdcInstrumentIDType
UnderlyingInstrID;

///Product type

TShfeFtdcProductClassType
ProductClass;

///Type of open interest

TShfeFtdcPositionTypeType
PositionType;

///Strike price

TShfeFtdcPriceType
StrikePrice;

///Option type

TShfeFtdcOptionsTypeType
OptionsType;

///Contract multiplier

TShfeFtdcVolumeMultipleType
VolumeMultiple;

///Contract multiplier for basic commodity

TShfeFtdcUnderlyingMultipleType
UnderlyingMultiple;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Contract name

TShfeFtdcInstrumentNameType
InstrumentName;

///Delivery year

TShfeFtdcYearType
DeliveryYear;

///Delivery month

TShfeFtdcMonthType
DeliveryMonth;

///Month in advance

TShfeFtdcAdvanceMonthType
AdvanceMonth;

///Is trading right now?

TShfeFtdcBoolType
IsTrading;

};

2.1.37. OnRtnDelInstrument Method
Notification for instrument/contract deletion: After the Member System logs in successfully, the Trading System would send the deleted contract in the system to the Member System via the public stream.
Function Prototype:

void OnRtnDelInstrument(CShfeFtdcInstrumentField *pInstrument)；

Parameter:
pInstrument: points to the address for contract/instrument structure. The structure:
struct CShfeFtdcInstrumentField {

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Product code

TShfeFtdcProductIDType
ProductID;

///Product suite's code

TShfeFtdcProductGroupIDType
ProductGroupID;

///Basic commodity code

TShfeFtdcInstrumentIDType
UnderlyingInstrID;

///Product type

TShfeFtdcProductClassType
ProductClass;

///Type of open interest

TShfeFtdcPositionTypeType
PositionType;

///Strike price

TShfeFtdcPriceType
StrikePrice;

///Option type

TShfeFtdcOptionsTypeType
OptionsType;

///Contract multiplier

TShfeFtdcVolumeMultipleType
VolumeMultiple;

///Contract multiplier for basic commodity

TShfeFtdcUnderlyingMultipleType
UnderlyingMultiple;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Contract name

TShfeFtdcInstrumentNameType
InstrumentName;

///Delivery year

TShfeFtdcYearType
DeliveryYear;

///Delivery month

TShfeFtdcMonthType
DeliveryMonth;

///Month in advance

TShfeFtdcAdvanceMonthType
AdvanceMonth;

///Is trading right now?

TShfeFtdcBoolType
IsTrading;

};

2.1.38. OnRtnInsCombinationLeg Method
Current version doesn't support this method.

This function is used for notification on addition of single leg of contract. When one successfully logged into member system, trading system will notify member system about the addition of sinle leg of portfolio contract in system via public stream.

Function prototype：

void OnRtnInsCombinationLeg(

CShfeFtdcCombinationLegField *pCombinationLeg);

Parameter：
pCombinationLeg：Address pointing to structure of single leg of portfolio trading contract. Structure of single leg of portfolio trading contract:

struct CShfeFtdcCombinationLegField {

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Portfolio contract code

TShfeFtdcInstrumentIDType
CombInstrumentID;

///Single leg No.

TShfeFtdcLegIDType
LegID;

///Single leg contract code

TShfeFtdcInstrumentIDType
LegInstrumentID;

///Buy-sell direction

TShfeFtdcDirectionType
Direction;

///Single leg multiplier

TShfeFtdcLegMultipleType
LegMultiple;

///Deduction of layers

TShfeFtdcImplyLevelType
ImplyLevel;

};

2.1.39. OnRtnDelCombinationLeg Method
Current version doesn't support this method.

This method is used for notification on deletion of single leg of contract. When Member System successfuly logged into the Trading System, the Trading System will notify Member System about the deletion of single leg of portfolio contact in system via public stream.

Function prototype：

void OnRtnDelCombinationLeg(

CShfeFtdcCombinationLegField *pCombinationLeg);

Parameter：
pCombinationLeg：Address pointing to structue of single leg of trading contract. Structure of single leg of portfolio trading contract:

struct CShfeFtdcCombinationLegField {

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Portfolio contract code

TShfeFtdcInstrumentIDType
CombInstrumentID;

///Single leg No.

TShfeFtdcLegIDType
LegID;

///Single leg contract code

TShfeFtdcInstrumentIDType
LegInstrumentID;

///Buy-sell direction

TShfeFtdcDirectionType
Direction;

///Single leg multiplier

TShfeFtdcLegMultipleType
LegMultiple;

///Deduction of layers

TShfeFtdcImplyLevelType
ImplyLevel;

};

2.1.40. OnRtnBulletin Method
Notificaton for bulletin: When the Exchange sends announcement through the Trading System, the Trading System would automatically inform Member System, and this method is called.

Function Prototype:

void OnRtnBulletin(CShfeFtdcBulletinField *pBulletin);

Parameter:
pBulletin: points to the address for bulletin/annoucement structure. The structure:
struct CShfeFtdcBulletinField {

///Business day

TShfeFtdcDateType
TradingDay;

///Bulletin No.

TShfeFtdcBulletinIDType
BulletinID;

///Sequence No.

TShfeFtdcSequenceNoType
SequenceNo;

///Bulletin type

TShfeFtdcNewsTypeType
NewsType;

///Urgency

TShfeFtdcNewsUrgencyType
NewsUrgency;

///Transmission time

TShfeFtdcTimeType
SendTime;

///Message digest

TShfeFtdcAbstractType
Abstract;

///Source of message

TShfeFtdcComeFromType
ComeFrom;

///Message body

TShfeFtdcContentType
Content;

///WEB address

TShfeFtdcURLLinkType
URLLink;

///Market code

TShfeFtdcMarketIDType
MarketID;

};

2.1.41. OnRtnAliasDefine Method
Notification for alias definition: The Trading System automatically informs Member System, and this method is called.
Function Prototype:

void OnRtnAliasDefine(CShfeFtdcAliasDefineField *pAliasDefine)；

Parameter:
pAliasDefine: points to the address for alias definition structure. The structure
struct CShfeFtdcAliasDefineField {

///Starting position

TShfeFtdcStartPosType
StartPos;

///Alias

TShfeFtdcAliasType
Alias;

///Original text

TShfeFtdcOriginalTextType
OriginalText;

};

2.1.42. OnRtnFlowMessageCancel Method

Notification for data stream cancellation: after the Trading System switches on the disaster recevery site, when user re-login the Trading System and subscribe to a data stream (private stream or public stream), the Trading System would automatically inform the Member System that some messages in that data stream is cancelled, and this method is called.
Function Prototype:

void OnRtnFlowMessageCancel(

CShfeFtdcFlowMessageCancelField *pFlowMessageCancel)；

Parameter:
pFlowMessageCancel: points to the address for data stream cancellation structure. The structure:
struct CShfeFtdcFlowMessageCancelField

{

/// Serial No. in sequence

TShfeFtdcSequenceSeriesType
SequenceSeries;

///Business day

TShfeFtdcDateType
TradingDay;

///Datacenter code

TShfeFtdcDataCenterIDType
DataCenterID;

/// Starting sequence No. of rollback

TShfeFtdcSequenceNoType
StartSequenceNo;

///Ending sequence No. of rollback

TShfeFtdcSequenceNoType
EndSequenceNo;

};

SequenceSeries：Datastream code of rollback occured （Private stream or public stream）
Message range of rollback: （StartSequenceNo,EndSequenceNo］
2.1.43. OnErrRtnOrderInsert Method
Order entry error return: sent automatically by the Trading System to Member System, by calling this method.

Function Prototype:

void OnErrRtnOrderInsert(

CShfeFtdcInputOrderField *pInputOrder,

CShfeFtdcRspInfoField *pRspInfo)；

Parameters:
pInputOrder：points to the address for order insert structure, including the input data while submitting the order entry and the order ID returned from the Trading System. The structure:
struct CShfeFtdcInputOrderField {

///Order No., this feild will be returned by trading system.

TShfeFtdcOrderSysIDType
OrderSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Conditions of order price

TShfeFtdcOrderPriceTypeType
OrderPriceType;

///Buy-sell direction

TShfeFtdcDirectionType
Direction;

///Flag of position opening and closing-out in a portfolio

TShfeFtdcCombOffsetFlagType
CombOffsetFlag;

///Flag of speculation and hedge in a portfolio

TShfeFtdcCombHedgeFlagType
CombHedgeFlag;

///Price

TShfeFtdcPriceType
LimitPrice;

///Quantity

TShfeFtdcVolumeType
VolumeTotalOriginal;

///Type of valid period

TShfeFtdcTimeConditionType
TimeCondition;

///GTD DATE

TShfeFtdcDateType
GTDDate;

///Volume type

TShfeFtdcVolumeConditionType
VolumeCondition;

///The Min.volume

TShfeFtdcVolumeType
MinVolume;

///Trigger conditions

TShfeFtdcContingentConditionType
ContingentCondition;

///Stop-loss price

TShfeFtdcPriceType
StopPrice;

///Reasons for forced closing-out

TShfeFtdcForceCloseReasonType
ForceCloseReason;

///Local order No.

TShfeFtdcOrderLocalIDType
OrderLocalID;

///Flag of auto-suspension

TShfeFtdcBoolType
IsAutoSuspend;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};
pRspInfo：points to the address for the information/message strucuture. The structure:
struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};
2.1.44. OnErrRtnOrderAction Method

Order action/operation error return: sent automatically by the Trading System to Member System, by calling this method.

Function Prototype:

void OnErrRtnOrderAction (

CShfeFtdcOrderActionField *pOrderAction,

CShfeFtdcRspInfoField *pRspInfo)；

Parameters:
pOrderAction: point to the address for order action/operation structure, including the input data while submitting the order action/operaction and the order ID returned from the Trading System. The Structure:
struct CShfeFtdcOrderActionField {

///Order No., this field will be returned by trading system.

TShfeFtdcOrderSysIDType
OrderSysID;

///Local order No.

TShfeFtdcOrderLocalIDType
OrderLocalID;

///Flag of order operation

TShfeFtdcActionFlagType
ActionFlag;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Price

TShfeFtdcPriceType
LimitPrice;

///Change in quantity

TShfeFtdcVolumeType
VolumeChange;

///Local No. of operation

TShfeFtdcOrderLocalIDType
ActionLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：points to the address for the information/message strucuture. The structure:
struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
2.1.45. OnErrRtnQuoteInsert Method
Current version doesn't support this method.

Return on erroneous quote entry. When the Member System was notified by the Trading System of such message, this method will be called.

Function prototype：

void OnErrRtnQuoteInsert (

CShfeFtdcInputQuoteField *pInputQuote,

CShfeFtdcRspInfoField *pRspInfo);

Parameters：
pInputQuote：Address pointing to the input quote structue, including the input data for quote entry operation and the quote No. returned from trading system. The input quote structure:

struct CShfeFtdcInputQuoteField {

///Quote No.,this field will be returned by trading system.

TShfeFtdcQuoteSysIDType
QuoteSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Quantity

TShfeFtdcVolumeType
Volume;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Local quote No.

TShfeFtdcQuoteLocalIDType
QuoteLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Flag of position opening and closing-out in buyer's portfolio

TShfeFtdcCombOffsetFlagType
BidCombOffsetFlag;

///Flag of hedge in buyer's portfolio

TShfeFtdcCombHedgeFlagType
BidCombHedgeFlag;

///Buyer's price

TShfeFtdcPriceType
BidPrice;

///Flag of position opening and closing-out in seller's portfolio

TShfeFtdcCombOffsetFlagType
AskCombOffsetFlag;

///Flag of hedge in seller's portfolio

TShfeFtdcCombHedgeFlagType
AskCombHedgeFlag;

///Seller's price

TShfeFtdcPriceType
AskPrice;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to response message structure.Response message structure:

struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};

2.1.46. OnErrRtnQuoteAction Method
Current version doesn't support this method.

Return on erroneous quote operation. When Member System was notified by the Trading System of such message, this message will be called.

Function prototype：

void OnErrRtnQuoteAction (

CShfeFtdcQuoteActionField *pQuoteAction,

CShfeFtdcRspInfoField *pRspInfo);

Parameters：
pQuoteAction：Address pointing to quote operation structure, including the input data for quote operation request and the quote No. returned from trading system. Quote operation structure. Quote operation structure:

struct CShfeFtdcQuoteActionField {

///Quote No.,this field will be returned by trading system.

TShfeFtdcQuoteSysIDType
QuoteSysID;

///Local quote No.

TShfeFtdcOrderLocalIDType
QuoteLocalID;

///Flag of order operation

TShfeFtdcActionFlagType
ActionFlag;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Local No. of operation

TShfeFtdcOrderLocalIDType
ActionLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to response message structure.Response message structure:

struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};

2.1.47. OnErrRtnExecOrderInsert Method
Current version doesn't support this method.

Return on erroneous entry of execution declaration. When Member System was notified by the Trading System of such message, this method will be called.

Function prototype：

void OnErrRtnExecOrderInsert (

CShfeFtdcInputExecOrderField *pInputExecOrder,

CShfeFtdcRspInfoField *pRspInfo)；

Function：
pInputExecOrder：Address ponting to execution declaration entry structure. The execution declaration entry structure:

struct CShfeFtdcInputExecOrderField {

///Contract No.

TShfeFtdcInstrumentIDType
InstrumentID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Local execution declaration No.

TShfeFtdcOrderLocalIDType
ExecOrderLocalID;

///Quantity

TShfeFtdcVolumeType
Volume;
/// offset flag

TShfeFtdcOffsetFlagType
OffsetFlag;
/// flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

/// position direction, i.e. whether buyer(long position) or seller(short position) made this application

TShfeFtdcPosiDirectionType
PosiDirection;

/// flag for whether position is reserved after option exercrised

TShfeFtdcExecOrderPositionFlagType
ReservePositionFlag;

/// flag for whether position is closed automatically after option exercrised

TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to response message structure.Response message structure:

struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};

2.1.48. OnErrRtnExecOrderAction Method
Current version doesn't support this method.

Return on erroneous operation of execution declaration. When member system was notified by trading system of such message, this method will be called.

Function prototype：

void OnErrRtnExecOrderAction (

CShfeFtdcExecOrderActionField *pExecOrderAction,

CShfeFtdcRspInfoField *pRspInfo);

Parameters：
pInputExecAction：Address pointing to declaration operation structure. Declaration operation structure：
struct CShfeFtdcExecOrderActionField {

///Execution declaration No.

TShfeFtdcExecOrderSysIDType
ExecOrderSysID;

///Local execution declaration No.

TShfeFtdcOrderLocalIDType
ExecOrderLocalID;

///Flag of order operation

TShfeFtdcActionFlagType
ActionFlag;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Local No. of operation

TShfeFtdcOrderLocalIDType
ActionLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to response message structure. Response message structure:

struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};

2.1.49. OnRspCombOrderInsert Method
Current version doesn't support this method.

Response to uncommon portfolio order entry. When Member System was notified by the Trading system, this method will be called.

Function prototype：

void OnRspCombOrderInsert (

CShfeFtdcInputCombOrderField *pInputCombOrder,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

Parameters：

pInputCombOrder：Address pointing to structure of uncommon portfolio order entry. Structure of entry of uncommon portfolio order is as below:

struct CShfeFtdcInputCombOrderField {

///Portfolio order No.

TShfeFtdcOrderSysIDType
CombOrderSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Price

TShfeFtdcPriceType
LimitPrice;

///Quantity

TShfeFtdcVolumeType
VolumeTotalOriginal;

///Local order No.

TShfeFtdcOrderLocalIDType
CombOrderLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Contract code 1

TShfeFtdcInstrumentIDType
InstrumentID1;

///Buy-sell direction 1

TShfeFtdcDirectionType
Direction1;

///Separate leg multiplier 1

TShfeFtdcLegMultipleType
LegMultiple1;

///Flag of position opening and closing-out 1

TShfeFtdcOffsetFlagType
OffsetFlag1;

///Flag of speculation and hedge 1

TShfeFtdcHedgeFlagType
HedgeFlag1;

///Contract code 2

TShfeFtdcInstrumentIDType
InstrumentID2;

///Buy-sell direction 2

TShfeFtdcDirectionType
Direction2;

///Separate leg multiplier2

TShfeFtdcLegMultipleType
LegMultiple2;

///Flag of position opening and closing-out 2

TShfeFtdcOffsetFlagType
OffsetFlag2;

///Flag of speculation and hedge 2

TShfeFtdcHedgeFlagType
HedgeFlag2;

///Contract code 3

TShfeFtdcInstrumentIDType
InstrumentID3;

///Buy-sell direction 3

TShfeFtdcDirectionType
Direction3;

///Separate leg multiplier 3

TShfeFtdcLegMultipleType
LegMultiple3;

///Flag of position opening and closing-out 3

TShfeFtdcOffsetFlagType
OffsetFlag3;

///Flag of speculation and hedge 3

TShfeFtdcHedgeFlagType
HedgeFlag3;

///Contract code 4

TShfeFtdcInstrumentIDType
InstrumentID4;

///Buy-sell direction 4

TShfeFtdcDirectionType
Direction4;

///Separate leg multiplier 4

TShfeFtdcLegMultipleType
LegMultiple4;

///Flag of position opening and closing-out 4

TShfeFtdcOffsetFlagType
OffsetFlag4;

///Flag of speculation and hedge 4

TShfeFtdcHedgeFlagType
HedgeFlag4;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

pRspInfo：Address pointing to response message structure. Response message structure:

struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};

nRequestID：ID for request for uncommon portfolio order entry. This ID will be designated and managed by user.

bIsLast：Indicating whether or not this return is the last return regarding nRequestID.
2.1.50. OnRspQryCombOrder Method
Current version doesn't support this method.

Response to query for uncommon portfolio order. When Member System was notified by the Trading System of such message, this method will be called.

Function prototype：

void OnRspCombOrderInsert (

CShfeFtdcCombOrderField *pCombOrder,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

Parameter：

pCombOrder：Address pointing to structure of uncommon portfolio order. Structure of uncommon portfolio order:

struct CShfeFtdcCombOrderField {

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///Portfolio order No.

TShfeFtdcOrderSysIDType
CombOrderSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Price

TShfeFtdcPriceType
LimitPrice;

///Quantity

TShfeFtdcVolumeType
VolumeTotalOriginal;

///Local order No.

TShfeFtdcOrderLocalIDType
CombOrderLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Contract code 1

TShfeFtdcInstrumentIDType
InstrumentID1;

///Buy-sell direction 1

TShfeFtdcDirectionType
Direction1;

///Separate leg multiplier 1

TShfeFtdcLegMultipleType
LegMultiple1;

///Flag of position opening and closing-out 1

TShfeFtdcOffsetFlagType
OffsetFlag1;

///Flag of speculation and hedge 1

TShfeFtdcHedgeFlagType
HedgeFlag1;

///Contract code 2

TShfeFtdcInstrumentIDType
InstrumentID2;

///Buy-sell direction 2

TShfeFtdcDirectionType
Direction2;

///Separate leg multiplier 2

TShfeFtdcLegMultipleType
LegMultiple2;

///Flag of position opening and closing-out 2

TShfeFtdcOffsetFlagType
OffsetFlag2;

///Flag of speculation and hedge 2

TShfeFtdcHedgeFlagType
HedgeFlag2;

///Contract code 3

TShfeFtdcInstrumentIDType
InstrumentID3;

///Buy-sell direction 3

TShfeFtdcDirectionType
Direction3;

///Separate leg multiplier 3

TShfeFtdcLegMultipleType
LegMultiple3;

///Flag of position opening and closing-out 3

TShfeFtdcOffsetFlagType
OffsetFlag3;

///Flag of speculation and hedge 3

TShfeFtdcHedgeFlagType
HedgeFlag3;

///Contract code 4

TShfeFtdcInstrumentIDType
InstrumentID4;

///Buy-sell direction 4

TShfeFtdcDirectionType
Direction4;

///Separate leg multiplier 4

TShfeFtdcLegMultipleType
LegMultiple4;

///Flag of position opening and closing-out 4

TShfeFtdcOffsetFlagType
OffsetFlag4;

///Flag of speculation and hedge 4

TShfeFtdcHedgeFlagType
HedgeFlag4;

///Source of order

TShfeFtdcOrderSourceType
OrderSource;

///Volume on that day

TShfeFtdcVolumeType
VolumeTraded;

///Remaining quantity

TShfeFtdcVolumeType
VolumeTotal;

///Date of order

TShfeFtdcDateType
InsertDate;

///Time of entry

TShfeFtdcTimeType
InsertTime;

///Settlement member's No.

TShfeFtdcParticipantIDType
ClearingPartID;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
///Action day

TShfeFtdcDateType ActionDay;
};
Note: ActionDay is a new field. If the day when business is executed is required, ActionDay should be used. If the trading day is required, TradingDay should be used. This filed is left to be empty when the function of ActionDay is not supported by SHFE.

pRspInfo：Address pointing to response message structure.Response message structure:

struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};

nRequestID：ID for request for uncommon portfolio order query. This ID will be designated and managed by user.

bIsLast：Indicating whether or not this return is the last return regarding nRequestID.
2.1.51. OnRtnCombOrder Method
Current version doesn't support this method.

Return on uncommon portfolio order. When Member System was notified by the Trading System of such message, this method will be called.
Function prototype：

void OnRtnCombOrder (CShfeFtdcCombOrderField *pCombOrder);

Parameter：

pCombOrder：Address pointing to structure of uncommon porfolio order. Structure of uncommon porfolio order：
struct CShfeFtdcCombOrderField {

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

///Portfolio order No.

TShfeFtdcOrderSysIDType
CombOrderSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Price

TShfeFtdcPriceType
LimitPrice;

///Quantity

TShfeFtdcVolumeType
VolumeTotalOriginal;

///Local order No.

TShfeFtdcOrderLocalIDType
CombOrderLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Contract code 1

TShfeFtdcInstrumentIDType
InstrumentID1;

///Buy-sell direction 1

TShfeFtdcDirectionType
Direction1;

///Separate leg multiplier 1

TShfeFtdcLegMultipleType
LegMultiple1;

///Flag of position opening and closing-out 1

TShfeFtdcOffsetFlagType
OffsetFlag1;

///Flag of speculation and hedge 1

TShfeFtdcHedgeFlagType
HedgeFlag1;

///Contract code 2

TShfeFtdcInstrumentIDType
InstrumentID2;

///Buy-sell direction 2

TShfeFtdcDirectionType
Direction2;

///Separate leg multiplier 2

TShfeFtdcLegMultipleType
LegMultiple2;

///Flag of position opening and closing-out 2

TShfeFtdcOffsetFlagType
OffsetFlag2;

///Flag of speculation and hedge 2

TShfeFtdcHedgeFlagType
HedgeFlag2;

///Contract code 3

TShfeFtdcInstrumentIDType
InstrumentID3;

///Buy-sell direction 3

TShfeFtdcDirectionType
Direction3;

///Separate leg multiplier 3

TShfeFtdcLegMultipleType
LegMultiple3;

///Flag of position opening and closing-out 3

TShfeFtdcOffsetFlagType
OffsetFlag3;

///Flag of speculation and hedge 3

TShfeFtdcHedgeFlagType
HedgeFlag3;

///Contract code 4

TShfeFtdcInstrumentIDType
InstrumentID4;

///Buy-sell direction 4

TShfeFtdcDirectionType
Direction4;

///Separate leg multiplier 4

TShfeFtdcLegMultipleType
LegMultiple4;

///Flag of position opening and closing-out 4

TShfeFtdcOffsetFlagType
OffsetFlag4;

///Flag of speculation and hedge 4

TShfeFtdcHedgeFlagType
HedgeFlag4;

///Source of order

TShfeFtdcOrderSourceType
OrderSource;

///Volume on that day

TShfeFtdcVolumeType
VolumeTraded;

///Remaining quantity

TShfeFtdcVolumeType
VolumeTotal;

///Date of order

TShfeFtdcDateType
InsertDate;

///Time of entry

TShfeFtdcTimeType
InsertTime;

///Settlement member's No.

TShfeFtdcParticipantIDType
ClearingPartID;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
///Action day

TShfeFtdcDateType ActionDay;
};
2.1.52. OnErrRtnCombOrderInsert Method
Current version doesn't support this method.

Return on erroneous entry of porfolio into an order. When Member System was notified by the Trading System of such message, this method will be called.

Function prototype：

void OnErrRtnCombOrderInsert (

CShfeFtdcInputCombOrderField *pInputCombOrder,

CShfeFtdcRspInfoField *pRspInfo);

Parameters：
pInputCombOrder：Address pointing to structure of entry of uncommon porfolio order. Structure of entry of uncommon porfolio order:

struct CshfeFtdcInputCombOrderField {

///Portfolio order No.

TShfeFtdcOrderSysIDType
CombOrderSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Price

TShfeFtdcPriceType
LimitPrice;

///Quantity

TShfeFtdcVolumeType
VolumeTotalOriginal;

///Local order No.

TShfeFtdcOrderLocalIDType
CombOrderLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Contract code 1

TShfeFtdcInstrumentIDType
InstrumentID1;

///Buy-sell direction 1

TShfeFtdcDirectionType
Direction1;

///Separate leg multiplier 1

TShfeFtdcLegMultipleType
LegMultiple1;

///Flag of position opening and closing-out 1

TShfeFtdcOffsetFlagType
OffsetFlag1;

///Flag of speculation and hedge 1

TShfeFtdcHedgeFlagType
HedgeFlag1;

///Contract code 2

TShfeFtdcInstrumentIDType
InstrumentID2;

///Buy-sell direction 2

TShfeFtdcDirectionType
Direction2;

///Separate leg multiplier 2

TShfeFtdcLegMultipleType
LegMultiple2;

///Flag of position opening and closing-out 2

TShfeFtdcOffsetFlagType
OffsetFlag2;

///Flag of speculation and hedge 2

TShfeFtdcHedgeFlagType
HedgeFlag2;

///Contract code 3

TShfeFtdcInstrumentIDType
InstrumentID3;

///Buy-sell direction 3

TShfeFtdcDirectionType
Direction3;

///Separate leg multiplier 3

TShfeFtdcLegMultipleType
LegMultiple3;

///Flag of position opening and closing-out 3

TShfeFtdcOffsetFlagType
OffsetFlag3;

///Flag of speculation and hedge 3

TShfeFtdcHedgeFlagType
HedgeFlag3;

///Contract code 4

TShfeFtdcInstrumentIDType
InstrumentID4;

///Buy-sell direction 4

TShfeFtdcDirectionType
Direction4;

///Separate leg multiplier 4

TShfeFtdcLegMultipleType
LegMultiple4;

///Flag of position opening and closing-out 4

TShfeFtdcOffsetFlagType
OffsetFlag4;

///Flag of speculation and hedge 4

TShfeFtdcHedgeFlagType
HedgeFlag4;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

};

pRspInfo：Address pointing to response message structure. Response message structure:

struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};

2.1.53. OnRspQryExecOrder Method
This method is not available until the option is supported by the Trading System.
This function is used to response the declaration query, and it is called when the Trading System takes the initiative to notify Member System.

Function prototype:

void OnRspQryExecOrder (

CShfeFtdcExecOrderField *pExecOrder,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);
Parameters:

pExecOrder：pointer to the CShfeFtdcExecOrderField structure, which is as below:

struct CShfeFtdcExecOrderField {

///trading day

TShfeFtdcDateType
TradingDay;

///settlement group code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///settlement ID

TShfeFtdcSettlementIDType
SettlementID;

///contract ID

TShfeFtdcInstrumentIDType
InstrumentID;

///member code

TShfeFtdcParticipantIDType
ParticipantID;

///client code

TShfeFtdcClientIDType
ClientID;

///transaction user’s code

TShfeFtdcUserIDType
UserID;

///execution declaration local ID

TShfeFtdcOrderLocalIDType
ExecOrderLocalID;

///quantity

TShfeFtdcVolumeType
Volume;

///offset flag

TShfeFtdcOffsetFlagType
OffsetFlag;

///flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

/// position direction, i.e. whether buyer(long position) or seller(short position) made this application

TShfeFtdcPosiDirectionType
PosiDirection;

/// flag for whether position is reserved after option exercrised

TShfeFtdcExecOrderPositionFlagType
ReservePositionFlag;

/// flag for whether position is closed automatically after option exercrised

TShfeFtdcExecOrderCloseFlagType CloseFlag;
///business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///execution declaration system ID

TShfeFtdcExecOrderSysIDType
ExecOrderSysID;

///order entry day

TShfeFtdcDateType
InsertDate;

///order entry time

TShfeFtdcTimeType
InsertTime;

///cancellation time

TShfeFtdcTimeType
CancelTime;

///execution result

TShfeFtdcExecResultType
ExecResult;

///Clearing Participant ID

TShfeFtdcParticipantIDType
ClearingPartID;

///Local Business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

///action day

TShfeFtdcDateType ActionDay;

};
Note: ActionDay is a new field. If the day when business is executed is required, ActionDay should be used. If the trading day is required, TradingDay should be used. This filed is left to be empty when the function of ActionDay is not supported by SHFE.
pRspInfo: pointer to the CShfeFtdcRspInfoField structure.

The structure of CShfeFtdcRspInfoField:
struct CShfeFtdcRspInfoField {

///

TShfeFtdcErrorIDType
ErrorID;

///

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：request ID, which is designated and managed by user.
bIsLast: indicates that whether this return is the last return for nRequestID.
2.1.54. OnRspQryExchangeRate Method
This method is not available until the multi-currency quotation and settlement are supported by the Trading System.
This function is used to response the exchange rate query, and it is called when the Trading System takes the initiative to notify Member System.
Function prototype:

void OnRspQryExchangeRate(

CShfeFtdcRspExchangeRateField *pRspExchangeRate,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);
Parameters:
pRspExchangeRate: pointer to the CShfeFtdcRspExchangeRateField structure, which is as below:
struct CShfeFtdcRspExchangeRateField {

///trading day

TShfeFtdcDateType
TradingDay;

///currency code

TShfeFtdcCurrencyIDType
CurrencyID;

///foreign exchange unit

TShfeFtdcRateUnitType
RateUnit;

///central parity rate

TShfeFtdcExRatePriceType
RatePrice;

};
pRspInfo: pointer to CShfeFtdcRspInfoField, whose structure is:
struct CShfeFtdcRspInfoField {

///error code

TShfeFtdcErrorIDType
ErrorID;

///error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：request ID, which is designated and managed by user.

bIsLast: indicates that whether this return is the last return for nRequestID.

2.1.55. OnRspQryInformation Method
This function is used to response the information query, and it is called when the Trading System takes the initiative to notify Member System.
Function prototype:

void OnRspQryInformation(

CShfeFtdcInformationField *pInformation,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);
Parameter:
pInformation：pointer to CShfeFtdcInformationField, whose structure is as below:
struct CShfeFtdcInformationField {

///message ID

TShfeFtdcInformationIDType
InformationID;

///sequence No.

TShfeFtdcSequenceNoType
SequenceNo;

///message body

TShfeFtdcContentType
Content;

///message length

TShfeFtdcContentLengthType
ContentLength;

///accomplished or not

TShfeFtdcBoolType
IsAccomplished；
};
pRspInfo: pointer to CShfeFtdcRspInfoField, whose structure is:
struct CShfeFtdcRspInfoField {

///error code

TShfeFtdcErrorIDType
ErrorID;

///error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：request ID, which is designated and managed by user.

bIsLast: indicates that whether this return is the last return for nRequestID.

2.1.56. OnMeasureNotify Method
This function is used to response the measurement notification. This method would be called when the Trading System notifies the Member Systemand the function CShfeFtdcTradeApi::AddLocalMeasureID would be executed inside this method to add local measuring node.

Function prototype:

int OnMeasureNotify();
Parameter:

 none.
Return Value:

If the return value is not 0, the local client would transfer the measure information to the server; if the return value is 0, then the local client does not participant in the measurement activity.

2.1.57. OnRspAbandonExecOrderInsert Method
This version doesn't support this method before Trading System support options trading.
Response to abandonment execution declaration entry. When Member System was notified by the Trading system, this method will be called.
Function prototype：

void OnRspAbandonExecOrderInsert (

CShfeFtdcInputAbandonExecOrderField *pInputAbandonExecOrder,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);
Parameters：

pInputAbandonExecOrder：Address pointing to structure of abandonment execution declaration entry. Structure of abandonment execution declaration is as below:
struct CShfeFtdcInputAbandonExecOrderField {

///Order No.

TShfeFtdcInstrumentIDType
InstrumentID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

/// Client code

TShfeFtdcClientIDType
ClientID;

/// Transaction user's code

TShfeFtdcUserIDType
UserID;

/// Abandonment Execution declaration Local ID

TShfeFtdcOrderLocalIDType
AbandonExecOrderLocalID;

///Quantity

TShfeFtdcVolumeType
Volume;

///Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

///position direction that apply for abandonment, only long position could apply for abandonment actually

TShfeFtdcPosiDirectionType
PosiDirection;

///Buiness Unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};
pRspInfo： pointer to the address for response information structure. Response information structure:
struct CShfeFtdcRspInfoField {

///error code

TShfeFtdcErrorIDType
ErrorID;

///error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：ID for abandonment execution declaration entry request, and it is specified and managed by the user.
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.58. OnRspAbandonExecOrderAction Method
This version doesn't support this method before Trading System support options trading.
Response to abandonment execution declaration modificatioin. When Member System was notified by the Trading system, this method will be called.

Function prototype：

void OnRspAbandonExecOrderAction (

CShfeFtdcAbandonExecOrderActionField *pAbandonExecOrderAction,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);
Parameters：

pAbandonExecOrderAction：Address pointing to structure of abandonment execution declaration modification. Structure of abandonment execution declaration modification is as below:
struct CShfeFtdcAbandonExecOrderActionField {

///Abandonment Execution declaration system ID

TShfeFtdcExecOrderSysIDType
AbandonExecOrderSysID;

///Abandonment Execution declaration Local ID

TShfeFtdcOrderLocalIDType
AbandonExecOrderLocalID;

/// flag of order operation

TShfeFtdcActionFlagType
ActionFlag;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///action local ID

TShfeFtdcOrderLocalIDType
ActionLocalID;

///business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

/// Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};
pRspInfo： pointer to the address for response information structure. Response information structure:
struct CShfeFtdcRspInfoField {

///error code

TShfeFtdcErrorIDType
ErrorID;

///error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：ID for abandonment execution declaration operation, and it is specified and managed by the user.
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.59. OnRspQryAbandonExecOrder Method
This version doesn't support this method before Trading System support options trading.
Response to abandonment execution declaration query. When Member System was notified by the Trading system, this method will be called.

Function prototype：

void OnRspQryAbandonExecOrder (

CShfeFtdcAbandonExecOrderField *pAbandonExecOrder,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);
Parameters：

pAbandonExecOrder：Address pointing to structure of abandonment execution declaration. Structure of abandonment execution declaration is as below:
struct CShfeFtdcAbandonExecOrderField {

///trading day

TShfeFtdcDateType
TradingDay;

/// settlement group code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

/// settlement ID

TShfeFtdcSettlementIDType
SettlementID;

/// contract ID

TShfeFtdcInstrumentIDType
InstrumentID;

/// member code

TShfeFtdcParticipantIDType
ParticipantID;

/// client code

TShfeFtdcClientIDType
ClientID;

/// transaction user's code

TShfeFtdcUserIDType
UserID;

/// Abandonment Execution declaration Local ID

TShfeFtdcOrderLocalIDType
AbandonExecOrderLocalID;

/// quantity

TShfeFtdcVolumeType
Volume;

/// Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

/// position direction that apply for abandonment, only long position could apply for abandonment actually

TShfeFtdcPosiDirectionType
PosiDirection;

/// business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

/// Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

/// Abandonment Execution declaration system ID

TShfeFtdcExecOrderSysIDType
AbandonExecOrderSysID;

/// order date

TShfeFtdcDateType
InsertDate;

/// insert time

TShfeFtdcTimeType
InsertTime;

/// cancellation time

TShfeFtdcTimeType
CancelTime;

/// result of abandonment execution

TShfeFtdcExecResultType
AbandonExecResult;

/// Settlement member ID

TShfeFtdcParticipantIDType
ClearingPartID;

/// action day

TShfeFtdcDateType ActionDay;

};
pRspInfo： pointer to the address for response information structure. Response information structure:
struct CShfeFtdcRspInfoField {

///error code

TShfeFtdcErrorIDType
ErrorID;

///error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：ID for abandonment execution declaration query request, and it is specified and managed by the user.
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.60. OnRtnAbandonExecOrder method
This version doesn't support this method before Trading System support options trading.
Return on abandonment execution declaration. When Member System was notified by the Trading system, this method will be called.

Function prototype：

void OnRtnAbandonExecOrder(

CShfeFtdcAbandonExecOrderField *pAbandonExecOrder);

Parameter：

pAbandonExecOrder：Address pointing to structure of abandonment execution declaration. Structure of abandon execution declaration is as below:
struct CShfeFtdcAbandonExecOrderField {

///trading day

TShfeFtdcDateType
TradingDay;

/// settlement group code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

/// settlement ID

TShfeFtdcSettlementIDType
SettlementID;

/// contract ID

TShfeFtdcInstrumentIDType
InstrumentID;

/// member code

TShfeFtdcParticipantIDType
ParticipantID;

/// client code

TShfeFtdcClientIDType
ClientID;

/// Transaction user's code

TShfeFtdcUser TransactionProcessing IDType
UserID;

/// Abandonment Execution declaration Local ID

TShfeFtdcOrderLocalIDType
AbandonExecOrderLocalID;

/// quantity

TShfeFtdcVolumeType
Volume;

/// Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

/// position direction that apply for abandonment, only long position could apply for abandonment actually

TShfeFtdcPosiDirectionType
PosiDirection;

/// business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

/// business local ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;

/// Abandonment Execution declaration system ID

TShfeFtdcExecOrderSysIDType
AbandonExecOrderSysID;

/// order date

TShfeFtdcDateType
InsertDate;

/// insert time

TShfeFtdcTimeType
InsertTime;

/// cancellation time

TShfeFtdcTimeType
CancelTime;

/// abandonment execution result

TShfeFtdcExecResultType
AbandonExecResult;

/// settlement member ID

TShfeFtdcParticipantIDType
ClearingPartID;

/// action day

TShfeFtdcDateType ActionDay;

};
2.1.61. OnErrRtnAbandonExecOrderInsert method
This version doesn't support this method before Trading System support options trading.
Return on abandonment execution declaration entry error. When Member System was notified by the Trading system, this method will be called.

Function prototype：

void OnErrRtnAbandonExecOrderInsert(

CShfeFtdcInputAbandonExecOrderField *pInputAbandonExecOrder,

CShfeFtdcRspInfoField *pRspInfo);
Parameters：

pInputAbandonExecOrder： Address pointing to structure of abandonment execution declaration entry. Structure of abandonment execution declaration entry is as below:
struct CShfeFtdcInputAbandonExecOrderField {

/// contract ID

TShfeFtdcInstrumentIDType
InstrumentID;

/// member code

TShfeFtdcParticipantIDType
ParticipantID;

/// client code

TShfeFtdcClientIDType
ClientID;

///transaction user's code

TShfeFtdcUserIDType
UserID;

/// local ID of abandon execution declaration

TShfeFtdcOrderLocalIDType
AbandonExecOrderLocalID;

/// quantity

TShfeFtdcVolumeType
Volume;

/// Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

/// position direction that apply for abandon, only long position could apply for abandonment actually

TShfeFtdcPosiDirectionType
PosiDirection;

/// business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

/// business local ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};
pRspInfo： pointer to the address for response information structure. Response information structure
struct CShfeFtdcRspInfoField {

/// error code

TShfeFtdcErrorIDType
ErrorID;

/// error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
2.1.62. OnErrRtnAbandonExecOrderAction method
This version doesn't support this method before Trading System support options trading.
Return on abandonment execution declaration operation error. When Member System was notified by the Trading system, this method will be called.

Function prototype：

void OnErrRtnAbandonExecOrderAction(

CShfeFtdcAbandonExecOrderActionField *pAbandonExecOrderAction,

CShfeFtdcRspInfoField *pRspInfo);
Parameters：

pAbandonExecOrderAction：Address pointing to structure of abandonment execution declaration modification. Structure of abandonment execution declaration modification is as below:
struct CShfeFtdcAbandonExecOrderActionField {

/// abandonment Execution declaration ID

TShfeFtdcExecOrderSysIDType
AbandonExecOrderSysID;

/// abandonment Execution declaration Local ID

TShfeFtdcOrderLocalIDType
AbandonExecOrderLocalID;

/// flag of order operation

TShfeFtdcActionFlagType
ActionFlag;

/// member code

TShfeFtdcParticipantIDType
ParticipantID;

/// client code

TShfeFtdcClientIDType
ClientID;

/// transaction user's code

TShfeFtdcUserIDType
UserID;

/// local ID of operation

TShfeFtdcOrderLocalIDType
ActionLocalID;

/// business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

/// business local ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};
pRspInfo：pointer to the address for response information structure. Response information structure
struct CShfeFtdcRspInfoField {

/// error code

TShfeFtdcErrorIDType
ErrorID;

/// error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
2.1.63. OnRspQuoteDemand method
This version doesn't support this method before Trading System support options trading market maker mechanism.
Response on quote query entry. When Member System was notified by the Trading system, this method will be called.

Function prototype:

void OnRspQuoteDemand(

CShfeFtdcQuoteDemandInfoField *pQuoteDemandInfo,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；

Parameters:

pQuoteDemandInfo： Address pointing to structure of quote query entry response. Structure of quote query information is as below:
struct CShfeFtdcQuoteDemandInfoField {

///trading day

TShfeFtdcDateType
TradingDay;

/// member code

TShfeFtdcParticipantIDType
ParticipantID;

/// client code

TShfeFtdcClientIDType
ClientID;

/// transaction user's code

TShfeFtdcUserIDType
UserID;

/// contract code

TShfeFtdcInstrumentIDType
InstrumentID;

/// quote demand local input ID

TShfeFtdcOrderLocalIDType
QuoteDemandLocalID;

/// request time

TShfeFtdcTimeType
DemandTime;

/// action day

TShfeFtdcDateType
ActionDay;
};
pRspInfo： pointer to the address for response information structure. Response information structure:
struct CShfeFtdcRspInfoField {

///error code

TShfeFtdcErrorIDType
ErrorID;

///error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：ID for quote entry request, and it is specified and managed by the user.
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.64. OnRtnQuoteDemandNotify method
This version doesn't support this method before Trading System support options trading market maker mechanism.
Distribution of quote query request. When market maker with corresponding authorities was notified by the Trading system, this method will be called.

Function prototype:

void OnRtnQuoteDemandNotify(

CShfeFtdcQuoteDemandNotifyField *pQuoteDemandNotify);

Parameters：

pQuoteDemandNotify： pointer to the address for quote query notification. Quote query notification structure:
struct CShfeFtdcQuoteDemandNotifyField {

/// contract ID

TShfeFtdcInstrumentIDType
InstrumentID;

/// Quote Demand occurred date

TShfeFtdcDateType
DemandDay;

/// Quote Demand occurred time

TShfeFtdcTimeType
DemandTime;

};
2.2 CShfeFtdcTraderApi Interfaces

Functions offered by the CShfeFtdcTraderApi interfaces include order and price quotation insert, order and price quotation cancellation, order and price quotation suspension, order and price quotation activation, order and price quotation amendment, order and price quotation query, trade done (or matched/filled order) query, member client query, member holding position query, client holding position query, contract/instrument query, contract/instrument trading status query, Exchange bulletin query, etc.

The System has a frequency quota/limit (i.e. number of instructions sent every second) for sending instruction for each seat. Once the quota is exceeded, the instructions sent out would be blocked in the network. Please consult the relevant department of the Exchange for specific quota number.

2.2.1. CreateFtdcTraderApi Method
This is to create an instance of the CShfeFtdcTraderApi; this cannot be created with a “new”.

Function Prototype:

static CShfeFtdcTraderApi *CreateFtdcTraderApi(const char *pszFlowPath = "");
Parameter:

pszFlowPath：constant character pointer, used to point to a file catalog/directory that stores the status of the bulletin/news sent by the Trading System. The default value is the current catalog/location/directory.
Return Value：

This returns a pointer that point to an instance of the CShfeFtdcTraderApi.

2.2.2. GetVersion Method
This is to get the API version.

Function Prototype:

const char *GetVersion(int &nMajorVersion, int &nMinorVersion) ;
Parameter:

nMajorVersion：returns the main/primary version number
nMinorVersion：returns the minor/secondary version number
Returned Value：

This returns a constant pointer that point to the versioning identification string.
2.2.3. Release Method

This is to release (delete) an instance of CShfeFtdcTraderApi; this cannot use the delete Method.
Function Prototype:

void Release()；

2.2.4. Init Method
This is to establish the connection between the Member System and the Trading System; after the connection is established, user can proceed to login.

Function Prototype:

void Init()；

2.2.5. Join Method
Member System waits for the end of an interface thread instance.

Function Prototype:

void Join()；

2.2.6. GetTradingDay Method
This is to get the current trading day. Only after successfully login to the Trading System, the correct value would be obtained.

Function Prototype:

const char *GetTradingDay()；

Return Value:

This returns a constant pointer that point to the date information character string.
2.2.7. RegisterSpi Method
This is to register to an instance derived from CShfeFtdcTraderSpi instance class; this instance would be used to complete events handling.

Function Prototype:

void RegisterSpi(CShfeFtdcTraderSpi *pSpi) ;
Parameter:

pSpi: realises/implements the pointer for ShfeFtdcTraderSpi interface instance.
2.2.8. RegisterFront Method
This is to set network communication address for the Exchange FEP. The Trading System has multiple FEP, and a user can concurrently register to multiple network communication addresses of the FEP.

This method has to be called before the Init Method is called.

Function Prototype:

void RegisterFront(char *pszFrontAddress);
Parameter:

pszFrontAddress：a pointer that points to the FEP network communication address. The server address is in the format “protocol://ipaddress:port”, e.g. “tcp://127.0.0.1:17001”. “tcp” in the example is the transmission protocol, “127.0.0.1” represents the server address, and “17001” represent s the server port number.
2.2.9. RegisterNameServer Method
This is to set the network communication address for the Exchange NameServer; this is used to get the FEP list. The Trading System has multiple NameServer, and a user can concurrently register to multiple NameServer network communication addresses.

This method has to be called before the Init Method is called.

Function Prototype:

void RegisterNameServer (char *pszNsAddress);
Parameter:

pszNsAddress: a pointer that points to the Exchange NameServer network communication address. The network address is in the format “protocol://ipaddress:port”,e.g. ”tcp://127.0.0.1:17001”. in the example is the transmission protocol, “127.0.0.1” represents the server address, and “17001” represent s the server port number.
2.2.10. SetHeartbeatTimeout Method
This is to set heartbeat timeout limit for network communication. After the connection between TraderAPI and the TCP of the Trading System is established, it would send regular heartbeat to detect whether the connection is functioning well. This method is used to set the time for the detecting heartbeat timeout. The Exchange suggests members to set the timeout to be between 10s and 30s.
Function Prototype:

virtual void SetHeartbeatTimeout(unsigned int timeout);
Parameter:

Timeout: heartbeat timeout time limit (in seconds). If no information/message is received from the Trading System after “timeout/2” seconds, CShfeFtdcTraderApi::OnHeartBeatWarning() would be called/triggered. If no information/message is received from the Trading System after “timeout” seconds, the connection would be stopped, and CShfeFtdcTraderApi ::OnFrontDisconnected() would be called/triggered
Please refer to Part I Section 4.8 for the heartbeat mechanism.

2.2.11. OpenRequestLog Method
This is to open the request log file. After this method is called, all request information sent to the Trading System would be recorded in the specified log files.

Function Prototype:

virtual int OpenRequestLog(const char *pszReqLogFileName);
Parameter:

pszReqLogFileName：the request log file name.
2.2.12. OpenResponseLog Method
This is to open the reply log file. After the method is called, all information returned from the Trading System would be recorded in the specified log file, including reply message and return message.

Function Prototype:

virtual int OpenResponseLog(const char *pszRspLogFileName);
Parameter:

pszRspLogFileName：reply log file name.
2.2.13. SubscribePrivateTopic Method
This is to subscribe to member-specific private stream. This method has to be called before the Init Method. If this method is not called, no private stream data would be received.

Function Prototype:

void SubscribePrivateTopic(TE_RESUME_TYPE nResumeType);
Parameter:

nResumeType：private stream re-transmission method types:
· TERT_RESTART：to re-transmit from current trading day
· TERT_RESUME：to re-transmit by resuming and continuing from last transmission; In order to ensure member trading data completeness/integrity, the Exchange recommend member to use this method of receiving private stream, and member should deal with other order operations after current day trading data is resumed/recovered.
· TERT_QUICK：to only transmit those post-current-login member-specific private stream contents; the Exchange does not recommend members to use this method of receiving private stream.
2.2.14. SubscribePublicTopic Method
This is to subscribe to public stream. This method has to be called before the Init Method. If this method is not called, no public stream data would be received.

Function Prototype:

void SubscribePublicTopic(TE_RESUME_TYPE nResumeType);
Parameter:

nResumeType：public stream re-transmission method types:
· TERT_RESTART：to re-transmit from current trading day
· TERT_RESUME：to re-transmit by resuming and continuing from last transmission
· TERT_QUICK：to only transmit those post-current-login member-specific private stream contents
2.2.15. SubscribeUserTopic Method
This is to subscribe to trader-specific private stream. This method has to be called before the Init Method. If this method is not called, no trader-specific private stream data would be received.

Function Prototype:

void SubscribeUserTopic(TE_RESUME_TYPE nResumeType);
Parameter:

nResumeType：private stream re-transmission method types (similar to Section 2.2.13 above):

· TERT_RESTART：to re-transmit from current trading day
· TERT_RESUME：to re-transmit by resuming and continuing from last transmission. . In order to ensure member trading data completeness/integrity, the Exchange recommend member to use this method of receiving private stream, and member should deal with other order operations after current day trading data is resumed/recovered.
· TERT_QUICK：to only transmit those post-current-login member-specific private stream contents. The Exchange does not recommend members to use this method of receiving private stream.
2.2.16. ReqUserLogin Method
This is the user login request.

Function Prototype:

int ReqUserLogin(

CShfeFtdcReqUserLoginField *pReqUserLoginField,

int nRequestID)；

Parameter:

pReqUserLoginField：points to the address for login request structure. The structure:

struct CShfeFtdcReqUserLoginField {

///Business day

TShfeFtdcDateType
TradingDay;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Password

TShfeFtdcPasswordType
Password;

///The user-end product information

TShfeFtdcProductInfoType
UserProductInfo;

///The interface-port product information, not used

TShfeFtdcProductInfoType
InterfaceProductInfo;

///Protocol information, not used

TShfeFtdcProtocolInfoType
ProtocolInfo;

///Datacenter code

TShfeFtdcDataCenterIDType
DataCenterID;

};

User is required to fill the field of "UserProductInfo", i.e., product information of member system such as software developer and version No. For example, ”SFIT Trader V100” represents the trading program and version No. developed by technology firm.

If member system maintains the sequence No. of retransmission on its own, then the "TradingDay" and "DataCenterID" shall be filled as return value responded from the previous login. If it is the first login or no resuming of transmission is required, then the "TradingDay" can be filled as empty string（””） while DataCenterID can be filled as 0 or as the primary datacenter code published by the Exchange.

nRequestID：the request ID for login request; it is specified and managed by the user.
Returned Value:

· 0, success
· -1,network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of request sent per second exceeds the allowable quantity.
2.2.17. ReqUserLogout Method

This is the user logout request.

Function Prototype:

int ReqUserLogout(

CShfeFtdcReqUserLogoutField *pReqUserLogout,

int nRequestID)；

Parameter:

pReqUserLogout：points to the address for logout request structure. The structure:

struct CShfeFtdcReqUserLogoutField {

///Trading User ID

TShfeFtdcUserIDType
UserID;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

};
nRequestID：the request ID for logout request; it is specified and managed by the user.
Returned Value:

· 0, success
· -1,network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of request sent per second exceeds the allowable quantity.
2.2.18. ReqUserPasswordUpdate Method

This is the user password update request.

Function Prototype:

int ReqUserPasswordUpdate(

CShfeFtdcUserPasswordUpdateField *pUserPasswordUpdate,

int nRequestID)；

Parameters:

pUserPasswordUpdate：points to the address for user password update structure. The structure:
struct CShfeFtdcUserPasswordUpdateField {

///Trading User ID

TShfeFtdcUserIDType
UserID;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

///Old Password

TShfeFtdcPasswordType
OldPassword;

///New Password

TShfeFtdcPasswordType
NewPassword;

};
nRequestID：the request ID for user password update request; it is specified and managed by the user.
Returned Value:

· 0, success
· -1,network connection failure
· -2,unprocessed attempts exceeds allowed login time limit
· -3,request sent within a second exceeds allowed quota
· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of request sent per second exceeds the allowable quantity.
2.2.19. ReqSubscribeTopic Method
This is the request to subscribe to topic/theme. This should be called after login.

Function Prototype:

int ReqSubscribeTopic (

CShfeFtdcDisseminationField * pDissemination,

int nRequestID)；

Parameters:

pDissemination：points to the address for subscribed topic structure, including topic to be subscribed as well as the starting message sequence number. The structure:
struct CShfeFtdcDisseminationField {

///Sequence series number

TShfeFtdcSequenceSeriesType
SequenceSeries;

///Sequence number

TShfeFtdcSequenceNoType
SequenceNo;
};

SequenceSeries：topics to be subscribed
SequenceNo：=-1 to re-transmit using the “QUICK” method

= other value, to resume transmission from this sequence number onwards

nRequestID：the request ID; it is specified and managed by the user.
Returned Value:

· 0, success
· -1,network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of request sent per second exceeds the allowable quantity.
2.2.20. ReqQryTopic Method
This is the request for querying topic/theme. This should be called after login.

Function Prototype:

int ReqQryTopic (

CShfeFtdcDisseminationField * pDissemination,

int nRequestID)；

Parameter:

pDissemination：points to the address for topic query structure, including topic to be queried. The structure:
struct CShfeFtdcDisseminationField {

///Sequence Series

TShfeFtdcSequenceSeriesType
SequenceSeries;

///Sequence Number

TShfeFtdcSequenceNoType
SequenceNo;
};

SequenceSeries：topics to be queried
SequenceNo：no need to fill in
nRequestID：the request ID; it is specified and managed by the user.
Returned Value:

· 0, success
· -1,network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of request sent per second exceeds the allowable quantity.
2.2.21. ReqOrderInsert Method

This is for request sent from Member System for order entry.

Function Prototype:

int ReqOrderInsert(

CShfeFtdcInputOrderField *pInputOrder,

int nRequestID)；

Parameters:

pInputOrder：points to the address for order entry structure. The structure:
struct CShfeFtdcInputOrderField {

///Order No.; this field will be returned by trading system.

TShfeFtdcOrderSysIDType
OrderSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Conditions of order price; only supports "price limit".

TShfeFtdcOrderPriceTypeType
OrderPriceType;

///Buy-sell direction

TShfeFtdcDirectionType
Direction;

///Flag of position opening and closing-out in a portfolio; only the first sign is effective.

TShfeFtdcCombOffsetFlagType
CombOffsetFlag;

///Flag of speculation and hedge in a portfolio; only the first sign is effective.

TShfeFtdcCombHedgeFlagType
CombHedgeFlag;

///Price

TShfeFtdcPriceType
LimitPrice;

///Quantity

TShfeFtdcVolumeType
VolumeTotalOriginal;

///Type of valid period ; supports "valid on that day" and "Immediate or cancel"

TShfeFtdcTimeConditionType
TimeCondition;

///GTD DATE,not used

TShfeFtdcDateType
GTDDate;

///Volume type; supports "arbitrary quantity"; also, supports “entire quality” or “minimum quality” when the TimeCondition is set to be TC_IOC

TShfeFtdcVolumeConditionType
VolumeCondition;

///The Min.volume, used when the VolumeCondition is set as “minimum quality”

TShfeFtdcVolumeType
MinVolume;

///Trigger conditions; only supports "immediate".

TShfeFtdcContingentConditionType
ContingentCondition;

///Stop-loss price,not used

TShfeFtdcPriceType
StopPrice;

///Reasons for forced closing-out; only supports "unforced closing-out"

TShfeFtdcForceCloseReasonType
ForceCloseReason;

///Local order No.*

TShfeFtdcOrderLocalIDType
OrderLocalID;

///Flag of auto-suspension

TShfeFtdcBoolType
IsAutoSuspend;

///Business unit,not used

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

* OrderLocalID：local order No. can only be monotonically increased. After each successful login, the Max.OrderLocalID "MaxOrderLocalID" can be obtained from the output parameter "CShfeFtdcRspUserLoginField" of OnRspUserLogin.Becaues trading system compared the size of OrderLocalID through character sting, the entire space for "TShfeFtdcOrderLocalIDType" shall be fully completed when seting the "OrderLocalID".

nRequestID：the request ID for order entry request; it is specified and managed by the user. Within one conversation, this ID cannot be duplicate.
Returned Value:

· 0, success
· -1, network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of request sent per second exceeds the allowable quantity.
2.2.22. ReqOrderAction Method
This is for request sent by Member System for order action/operation, including order cancellation, order suspension, order activation, and order amendment.

Function Prototype:

int ReqOrderAction(

CShfeFtdcOrderActionField *pOrderAction,

int nRequestID)；

Parameters:

pOrderAction: points to the address for order action/operation structure. The structure:
struct CShfeFtdcOrderActionField {

///Order No.*

TShfeFtdcOrderSysIDType
OrderSysID;

///Local order No.*

TShfeFtdcOrderLocalIDType
OrderLocalID;

///Flag of order operation; only supports "deletion"

TShfeFtdcActionFlagType
ActionFlag;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Price，not used

TShfeFtdcPriceType
LimitPrice;

///Local No. of operation

TShfeFtdcOrderLocalIDType
ActionLocalID;

///Change in quantity,not used

TShfeFtdcVolumeType
VolumeChange;

///Business unit，not used

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

* OrderSysID and OrderLocalID means that either of the target order to operated can be filled.

* ActionLocalID：local No.of operation can only be monotonically increased. After each successful login, the Max.OrderLocalID "MaxOrderLocalID" can be obtained from the output parameter "CShfeFtdcRspUserLoginField" of OnRspUserLogin.Becaues trading system compared the size of OrderLocalID through character sting, the entire space for "TShfeFtdcOrderLocalIDType" shall be fully completed when seting the "OrderLocalID".

nRequestID: the user request ID; it is specified and managed by the user.
Returned Value:

· 0, successful
· -1,network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of request sent per second exceeds the allowable quantity.
2.2.23. ReqQuoteInsert Method
Current version doesn't support this method.

This method is used by Member system to send the quote entry request.

Function prototype：

int ReqQuoteInsert(

CShfeFtdcInputQuoteField *pInputQuote,

int nRequestID)；
Parameters：
pInputQuote：Address pointing to the quote entry structure. The quote entry structure:

struct CShfeFtdcInputQuoteField {

///Quote No.; this field will be returned from trading system.

TShfeFtdcQuoteSysIDType
QuoteSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Quantity

TShfeFtdcVolumeType
Volume;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Local quote No.*

TShfeFtdcQuoteLocalIDType
QuoteLocalID;

///Business unit, not used

TShfeFtdcBusinessUnitType
BusinessUnit;

///Flag of position opening and closing-out in buyer's portfolio

TShfeFtdcCombOffsetFlagType
BidCombOffsetFlag;

///Flag of hedge in buyer's portfolio

TShfeFtdcCombHedgeFlagType
BidCombHedgeFlag;

///Buyer's price

TShfeFtdcPriceType
BidPrice;

///Flag of position opening and closing-out in seller's portfolio

TShfeFtdcCombOffsetFlagType
AskCombOffsetFlag;

///Flag of hedge in seller's portfolio

TShfeFtdcCombHedgeFlagType
AskCombHedgeFlag;

///Seller's price

TShfeFtdcPriceType
AskPrice;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

nRequestID：ID for user's quote request. This ID will be designated and managed by user.

Return value：
· 0: success.

· -1: the network connection failure;

· -2: indicates that the unprocessed requests exceed the allowable quantity;

· -3: indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.24. ReqQuoteAction Method
Current version doesn't support this method.

By using this method, Member System sends the request for quote operation, including cancellation of order, suspension of quote, activation of quote and modification to order.

Function prototype：

int ReqQuoteAction(

CShfeFtdcQuoteActionField *pQuoteAction,

int nRequestID)；
Parameters：
pQuoteAction：Address pointing to the quote operation structure. The quote operation structure:

struct CShfeFtdcQuoteActionField {

///Quote No.

TShfeFtdcQuoteSysIDType
QuoteSysID;

///Local quote No.

TShfeFtdcOrderLocalIDType
QuoteLocalID;

///Flag of order operation

TShfeFtdcActionFlagType
ActionFlag;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

/// Local No. of operation

TShfeFtdcOrderLocalIDType
ActionLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

nRequestID：ID for user's quote operation request. This ID will be designated and managed by user.

Return value：
· 0, represents success.

· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.25. ReqExecOrderInsert Method
Current version doesn't support this method.

Request for execution of declaration entry.

Function prototype：

int ReqExecOrderInsert(

CShfeFtdcInputExecOrderField *pInputExecOrder,

int nRequestID)；

Parameters：
pInputExecOrder：Address pointing to execution declaration structure. Execution declaration structure:

struct CShfeFtdcInputExecOrderField {

///Contract No.

TShfeFtdcInstrumentIDType
InstrumentID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Local execution declaration No.

TShfeFtdcOrderLocalIDType
ExecOrderLocalID;

///Quantity

TShfeFtdcVolumeType
Volume;

/// Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

/// position direction, i.e. whether buyer(long position) or seller(short position) made this application

TShfeFtdcPosiDirectionType
PosiDirection;

/// flag for whether position is reserved after option exercrised

TShfeFtdcExecOrderPositionFlagType
ReservePositionFlag;

/// flag for whether position is closed automatically after option exercrised

TShfeFtdcExecOrderCloseFlagType CloseFlag;
///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

nRequestID：ID for annoncement entry request. This ID will be designated and managed by user.

Return value：
· 0, represents success.

· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.26. ReqExecOrderAction Method
Current version doesn't support this method.

Request for execution of declaration operation.

Function prototype：

int ReqExecOrderAction(

CShfeFtdcExecOrderActionField *pExecOrderAction,

int nRequestID);

Parameters：
pExecOrderAction：Address pointing to structure of execution declaration operation. Structure of execution declaration operation:

struct CShfeFtdcExecOrderActionField {

///Execution declaration No.

TShfeFtdcExecOrderSysIDType
ExecOrderSysID;

///Local execution declaration No.

TShfeFtdcOrderLocalIDType
ExecOrderLocalID;

///Flag of order operation

TShfeFtdcActionFlagType
ActionFlag;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Local No. of operation

TShfeFtdcOrderLocalIDType
ActionLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

nRequestID：ID for execution declaration operation request. This ID will be designated and managed by user.

Return value：
· 0, represents success.

· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.27. ReqQryPartAccount Method
This is the request for member fund/cash query. All those incomplete query requests after timeout would be removed (same for below other query methods).

Function Prototype:

int ReqQryPartAccount(

CShfeFtdcQryPartAccountField *pQryPartAccount,

int nRequestID)；

Parameters:

pQryPartAccount: points to the address for member cash/fund query structure. The structure:
struct CShfeFtdcQryPartAccountField {

///The starting member code can only represent this member

TShfeFtdcParticipantIDType
PartIDStart;

///The ending member code can only represent this member

TShfeFtdcParticipantIDType
PartIDEnd;

///Capital account，optional

TShfeFtdcAccountIDType
AccountID;

};

nRequestID：User request ID; this ID is specified and managed by user.
Returned Value:

· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.28. ReqQryOrder Method
This is for order query request.

Function Prototype:

int ReqQryOrder(

CShfeFtdcQryOrderField *pQryOrder,

int nRequestID)；

Parameters:

pQryOrder: points to the address for order query structure. The query conditions are related. If an optional query condition is empty, that query condition is ignored. The structure:
struct CShfeFtdcQryOrderField {

///The starting member code can only represent this member

TShfeFtdcParticipantIDType
PartIDStart;

///The ending member code can only represent this member

TShfeFtdcParticipantIDType
PartIDEnd;

///Order No.，optional

TShfeFtdcOrderSysIDType
OrderSysID;

///Contract code,optional

TShfeFtdcInstrumentIDType
InstrumentID;

///Client code,optional

TShfeFtdcClientIDType
ClientID;

///Transaction user's code,optional

TShfeFtdcUserIDType
UserID;

///The starting time,optional

TShfeFtdcTimeType
TimeStart;

///The finishing time,optional

TShfeFtdcTimeType
TimeEnd;

};

nRequestID：user’s order query request ID; this is specied and managed by user.
Returned Value:
· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.29. ReqQryQuote Method
Current version doesn't support this method.

Quote query request.

Function prototype：

int ReqQryQuote(

CShfeFtdcQryQuoteField *pQryQuote,

int nRequestID)；
Parameters：
pQryQuote：Address pointing to quote query structue. Quote query structure:

struct CShfeFtdcQryQuoteField {

///The starting member code

TShfeFtdcParticipantIDType
PartIDStart;

///The ending member code

TShfeFtdcParticipantIDType
PartIDEnd;

///Quote No.

TShfeFtdcQuoteSysIDType
QuoteSysID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

};

nRequestID：ID for user's quote query request . This ID will be designated and managed by user.

Return value：
· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.30. ReqQryTrade Method
This is the request for trade query (matched/filled order query).

Function Prototype:

int ReqQryTrade(

CShfeFtdcQryTradeField *pQryTrade,

int nRequestID)；
Parameters:

pQryTrade：points to the address for trade query (i.e. filled/matched order) structure. The structure:

struct CShfeFtdcQryTradeField {

///The starting member code can only represent this member

TShfeFtdcParticipantIDType
PartIDStart;

///The ending member code can only represent this member

TShfeFtdcParticipantIDType
PartIDEnd;

///The starting contract code, optional

TShfeFtdcInstrumentIDType
InstIDStart;

///The ending contract code, optional

TShfeFtdcInstrumentIDType
InstIDEnd;

///Transaction No. ,optional

TShfeFtdcTradeIDType
TradeID;

///Client code,optional

TShfeFtdcClientIDType
ClientID;

///Transaction user's code,optional

TShfeFtdcUserIDType
UserID;

///The starting time,optional

TShfeFtdcTimeType
TimeStart;

///The finishing time,optional

TShfeFtdcTimeType
TimeEnd;
 };

NRequestID: user trade query request ID; this is specified and managed by user.
Returned Value:

· 0,represents successful.

· -1,represents the network connection failure;

· -2,indicates that the unprocessed requests exceed the allowable quantity;

· -3,indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.31. ReqQryClient Method
This is for member client query request.

Function Prototype:

int ReqQryClient(

CShfeFtdcQryClientField *pQryClient,

int nRequestID)；

Parameters:

pQryClient：points to the address for client query structure. The structure:
struct CShfeFtdcQryClientField {

///The starting member code can only represent this member

TShfeFtdcParticipantIDType
PartIDStart;

///The ending member code can only represent this member

TShfeFtdcParticipantIDType
PartIDEnd;

///The starting client code, optional

TShfeFtdcClientIDType
ClientIDStart;

///The ending client code, optional

TShfeFtdcClientIDType
ClientIDEnd;

};

nRequestID：user client query request ID; it is specified and managed by user.
Returned Value:

· 0,represents successful.

· -1,represents the network connection failure;

· -2,indicates that the unprocessed requests exceed the allowable quantity;

· -3,indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.32. ReqQryPartPosition Method
Member position query request:

Function Prototype:

int ReqQryPartPosition(

CShfeFtdcQryPartPositionField *pQryPartPosition,

int nRequestID)；

Parameters:

pQryPartPosition：points to the address for member position query structure. The structure:
struct CShfeFtdcQryPartPositionField {

///The starting member code can only represent this member

TShfeFtdcParticipantIDType
PartIDStart;

///The ending member code can only represent this member

TShfeFtdcParticipantIDType
PartIDEnd;

///The starting contract code, optional

TShfeFtdcInstrumentIDType
InstIDStart;

///The ending contract code, optional

TShfeFtdcInstrumentIDType
InstIDEnd;

};

nRequestID：position query request ID; this ID is specified and managed by user.
Returned Value:

· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.33. ReqQryClientPosition Method

Client position query request:

Function Prototype:

int ReqQryClientPosition(

CShfeFtdcQryClientPositionField *pQryClientPosition,

int nRequestID);
Parameters:

pQryClientPosition：points to the address for client position query structure. The structure:
struct CShfeFtdcQryClientPositionField {

///The starting member code can only represent this member

TShfeFtdcParticipantIDType
PartIDStart;

///The ending member code can only represent this member

TShfeFtdcParticipantIDType
PartIDEnd;

///The starting client code, optional

TShfeFtdcClientIDType
ClientIDStart;

///The ending client code, optional

TShfeFtdcClientIDType
ClientIDEnd;

///The starting contract code, optional

TShfeFtdcInstrumentIDType
InstIDStart;

///The ending contract code, optional

TShfeFtdcInstrumentIDType
InstIDEnd;

///Type of client,optional

TShfeFtdcClientTypeType
ClientType;

};

nRequestID：client position query request ID; this is specified and managed by user.
Returned Value:

· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.34. ReqQryInstrument Method
Instrument/Contract query request:

Function Prototype:

int ReqQryInstrument(

CShfeFtdcQryInstrumentField *pQryInstrument,

int nRequestID)；

Parameters:

pQryInstrument：pointer to the address for instrument/contract query structure. The structure:
struct CShfeFtdcQryInstrumentField {

///Settlement group's code,optional

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Product suite's code,optional

TShfeFtdcProductGroupIDType
ProductGroupID;

///Product code,optional

TShfeFtdcProductIDType
ProductID;

///Contract code ,optional

TShfeFtdcInstrumentIDType
InstrumentID;

};

nRequestID：instrument/contract query request ID; this is specified and managed by user.
Returned Value:

· 0, represents success.

· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.35. ReqQryInstrumentStatus Method
Instrument/Contract trading status query request:

Function Prototype:

int ReqQryInstrumentStatus(

CShfeFtdcQryInstrumentStatusField *pQryInstrumentStatus,

int nRequestID)；
Parameters:

pQryInstrumentStatus：points to the address for instrument/contract trading status query structure. The structure:
struct CShfeFtdcQryInstrumentStatusField {

///The starting contract code, optional

TShfeFtdcInstrumentIDType
InstIDStart;

///The ending contract code, optional

TShfeFtdcInstrumentIDType
InstIDEnd;

};

nRequestID：instrument/contract trading status query request ID, specified and managed by user.
Returned Value:

· 0, represents success.

· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.36. ReqQryMarketData Method
Request sent by Member System for general quotation query.

Function Prototype:

int ReqQryMarketData(

CShfeFtdcQryMarketDataField *pQryMarketData,

int nRequestID)；
Parameters:

pQryMarketData：points to the address for quotation query structure. The structure:
struct CShfeFtdcQryMarketDataField {

///Product code,optional

TShfeFtdcProductIDType
ProductID;

///Contract code ,optional

TShfeFtdcInstrumentIDType
InstrumentID;

};

nRequestID：user query request ID, specified and managed by user.
Returned Value:

· 0, successful
· -1, network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.37. ReqQryBulletin Method
Exchange bulletin query request.

Function Prototype:

int ReqQryBulletin(

CShfeFtdcQryBulletinField *pQryBulletin,

int nRequestID)；

Parameters:

pQryBulletin：points to the address for Exchange bulletin query structure. The structure:
struct CShfeFtdcQryBulletinField {

///Trading Day, Optional

TShfeFtdcDateType
TradingDay;

///market ID, optional

TShfeFtdcMarketIDType
MarketID;

///bulletin ID, optional

TShfeFtdcBulletinIDType
BulletinID;

///bulletin type, optional

TShfeFtdcNewsTypeType
NewsType;

///urgency level, optional

TShfeFtdcNewsUrgencyType
NewsUrgency;

};
nRequestID：bulletin query request ID, , specified and managed by user.
Returned Value:

· 0, successful
· -1, network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.38. ReqQryMBLMarketData Method
Instrument/Contract price/market data query request.

Function Prototype:

int ReqQryMBLMarketData(

CShfeFtdcQryMBLMarketDataField *pQryMBLMarketData,

int nRequestID);

Parameters:

pQryMBLMarketData：points to the address for instrument/contract price/market data query structure. The structure:
struct CShfeFtdcQryMBLMarketDataField {

///starting contract/instrument ID, optional

TShfeFtdcInstrumentIDType
InstIDStart;

/// ending contract/instrument ID, optional

TShfeFtdcInstrumentIDType
InstIDEnd;

///buy-sell direction, optional

TShfeFtdcDirectionType
Direction;

};
nRequestID：instrument/contract price/market data query request ID, specified and managed by user.
Returned Value:

· 0, success
· -1,network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.39. ReqQryHedgeVolume Method
Hedge volume query request:

Function Prototype:

int ReqQryHedgeVolume(

CShfeFtdcQryHedgeVolumeField *pQryHedgeVolume,

int nRequestID);
Parameters:

pQryHedgeVolume：points to the address for hedge volume query structure. The structure:
struct CshfeFtdcQryHedgeVolumeField {

{

///starting member ID, can only be the specific member

TShfeFtdcParticipantIDType
PartIDStart;

///ending member ID, can only be the specific member

TShfeFtdcParticipantIDType
PartIDEnd;

/// starting client ID, optional

TShfeFtdcClientIDType
ClientIDStart;

/// ending client ID, optional

TShfeFtdcClientIDType
ClientIDEnd;

/// starting contract/instrument ID, optional

TShfeFtdcInstrumentIDType
InstIDStart;

/// ending contract/instrument ID, optional

TShfeFtdcInstrumentIDType
InstIDEnd;

};
nRequestID: Hedge volume query request ID, specified and managed by user.

Returned Value:

· 0, successful
· -1,network connection failure
· -2, indicates that the unprocessed requests exceed the allowable quantity;

· -3, indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.40. ReqCombOrderInsertMethod

Current version doesn't support this method.

By using this method, Member System sends the request for entry of uncommon portfolio.

Function prototype：

int ReqCombOrderInsert (

CShfeFtdcInputCombOrderField *pInputCombOrder,

int nRequestID)；
Parameters：

pInputCombOrder：Address pointing to structure of entry of uncommon portfolio order. Structure of entry of uncommon portfolio order:

struct CShfeFtdcInputCombOrderField {

///Portfolio order No.

TShfeFtdcOrderSysIDType
CombOrderSysID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

///Client code

TShfeFtdcClientIDType
ClientID;

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Price

TShfeFtdcPriceType
LimitPrice;

///Quantity

TShfeFtdcVolumeType
VolumeTotalOriginal;

///Local order No.

TShfeFtdcOrderLocalIDType
CombOrderLocalID;

///Business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

///Contract code 1

TShfeFtdcInstrumentIDType
InstrumentID1;

///Buy-sell direction 1

TShfeFtdcDirectionType
Direction1;

///Separate leg multiplier 1

TShfeFtdcLegMultipleType
LegMultiple1;

///Flag of position opening and closing-out 1

TShfeFtdcOffsetFlagType
OffsetFlag1;

///Flag of speculation and hedge 1

TShfeFtdcHedgeFlagType
HedgeFlag1;

///Contract code 2

TShfeFtdcInstrumentIDType
InstrumentID2;

///Buy-sell direction 2

TShfeFtdcDirectionType
Direction2;

///Separate leg multiplier 2

TShfeFtdcLegMultipleType
LegMultiple2;

///Flag of position opening and closing-out 2

TShfeFtdcOffsetFlagType
OffsetFlag2;

///Flag of speculation and hedge 2

TShfeFtdcHedgeFlagType
HedgeFlag2;

///Contract code 3

TShfeFtdcInstrumentIDType
InstrumentID3;

///Buy-sell direction 3

TShfeFtdcDirectionType
Direction3;

///Separate leg multiplier 3

TShfeFtdcLegMultipleType
LegMultiple3;

///Flag of position opening and closing-out 3

TShfeFtdcOffsetFlagType
OffsetFlag3;

///Flag of speculation and hedge 3

TShfeFtdcHedgeFlagType
HedgeFlag3;

///Contract code 4

TShfeFtdcInstrumentIDType
InstrumentID4;

///Buy-sell direction 4

TShfeFtdcDirectionType
Direction4;

///Separate leg multiplier 4

TShfeFtdcLegMultipleType
LegMultiple4;

///Flag of position opening and closing-out 4

TShfeFtdcOffsetFlagType
OffsetFlag4;

///Flag of speculation and hedge 4

TShfeFtdcHedgeFlagType
HedgeFlag4;
///Local business ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};

nRequestID：ID for request for entry of uncommon porfolio order. This ID will be designated and managed by user.

Return value：
· 0,represents success.

· -1,represents the network connection failure;

· -2,indicates that the unprocessed requests exceed the allowable quantity;

· -3,indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.41. ReqQryCombOrder Method

Current version doesn't support this method.

This method is used to perform the quote query request.

Function prototype：

int ReqQryCombOrder (

CShfeFtdcQryCombOrderField *pQryCombOrder,

int nRequestID)；
Parameters：
pQryCombOrder：pointer to CShfeFtdcCombOrderField, whose structure is as below:
struct CShfeFtdcQryCombOrderField

{

///Participant ID to start with

TShfeFtdcParticipantIDType
PartIDStart;

///Participant ID as an end

TShfeFtdcParticipantIDType
PartIDEnd;

///Combined Order System ID

TShfeFtdcOrderSysIDType
CombOrderSysID;

///

TShfeFtdcClientIDType
ClientID;

///

TShfeFtdcUserIDType
UserID;

};
nRequestID： user's quote query request ID, which should be designated and managed by user.

Return value：
· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number ofrequests sent per second exceeds the allowable quantity.
2.2.42. ReqQryExecOrder Method
This method is not supported by the Trading System until the option is open for trading.
Request of execution declaration query
Function Prototype:

int ReqQryExecOrder (

CShfeFtdcQryExecOrderField *pQryExecOrder,

int nRequestID)；
Parameters:

pQryExecOrder：pointer which represents the address of a CShfeFtdcQryExecOrderField instance

The structure of CShfeFtdcQryExecOrderField is as below:

struct CShfeFtdcQryExecOrderField

{

///Member ID to start

TShfeFtdcParticipantIDType
PartIDStart;

///Member ID to end

TShfeFtdcParticipantIDType
PartIDEnd;

///Execution Order ID

TShfeFtdcExecOrderSysIDType
ExecOrderSysID;

///Instrument ID

TShfeFtdcInstrumentIDType
InstrumentID;

///Client ID

TShfeFtdcClientIDType
ClientID;

///User ID

TShfeFtdcUserIDType
UserID;

///Time to start

TShfeFtdcTimeType
TimeStart;

///Time to end

TShfeFtdcTimeType
TimeEnd;

};
nRequestID：ID for user to execute the execution order query, and this ID is designated and managed by user.
Return value:
· 0,represents success.

· -1,represents the network connection failure;

· -2,indicates that the unprocessed requests exceed the allowable quantity;
· -3,indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.43. ReqQryExchangeRate Method
This method is not available until the multi-currency quotation and settlement are supported by the Trading System.

This function is used to perform the exchange rate query.
Function prototype:

int ReqQryExchangeRate (

CShfeFtdcQryExchangeRateField *pQryExchangeRate,

int nRequestID)；
Parameters:
pQryExchangeRate: pointer directed to the address of the CShfeFtdcQryExchangeRateField structure.
The structure of CShfeFtdcQryExchangeRateField is as below:

struct CShfeFtdcQryExchangeRateField

{

///Currency ID

TShfeFtdcCurrencyIDType
CurrencyID;

};
nRequestID：the request ID of user’s query, which is designated and managed by user.
Return value:
· 0, represents success.

· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.44. ReqQryInformation Method

This function is for information query request.
Function prototype:

int ReqQryInformation (

CShfeFtdcQryInformationField *pQryInformation,

int nRequestID)；
Parameters:
pQryInformation: pointer to the CShfeFtdcQryInformationField structure.

The structure of CShfeFtdcQryInformationField is as below:
struct CShfeFtdcQryInformationField

{

///Information ID to start

TShfeFtdcInformationIDType
InformationIDStart;

///Information ID to end

TShfeFtdcInformationIDType
InformationIDEnd;
};
nRequestID：user’s query request ID, which is designated and managed by user.
Return value:
· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.45. AddMeasureItem Method

This method is used to add local measurement node, and it is only permitted to be called inside the CShfeFtdcTradeSpi::OnMeasureNotify() method.

Function prototype:

int AddMeasureItem (

const char *pszMeasureItem)；
Parameter:

pszMeasureItem：the name for the local measurement node, as a string employing less than 20 characters.
Return value:

· 0, success.

· -1, means that this method is not inside CShfeFtdcTradeSpi::OnMeasureNotify(), and the output is restricted;

· -2, pszMeasureItem is null；

· -3, the length of pszMeasureItem is longer than 20 characters;

· -4, the number of output node exceeds the maximum permissible value;

2.2.46. ReqAbandonExecOrderInsert method
This version doesn't support this method before Trading System support options trading.
Abandonment execution declaration entry request, only call buyer has rights to abandon execution.
Function prototype：

int ReqAbandonExecOrderInsert(

CShfeFtdcInputAbandonExecOrderField *pInputAbandonExecOrder,

int nRequestID)；

Parameter：

pInputAbandonExecOrder: Address pointing to structure of abandonment execution declaration. Structure of abandonment execution declaration is as below:
struct CShfeFtdcInputAbandonExecOrderField {

/// contract ID

TShfeFtdcInstrumentIDType
InstrumentID;

/// member code

TShfeFtdcParticipantIDType
ParticipantID;

/// client code

TShfeFtdcClientIDType
ClientID;

/// transaction user’s code

TShfeFtdcUserIDType
UserID;

/// abandon Execution declaration Local ID

TShfeFtdcOrderLocalIDType
AbandonExecOrderLocalID;

/// quantity

TShfeFtdcVolumeType
Volume;

/// Flag of speculation and hedge

TShfeFtdcHedgeFlagType
HedgeFlag;

/// position direction that apply for abandonment, only long position could apply for abandonment actually

TShfeFtdcPosiDirectionType
PosiDirection;

/// business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

/// business local ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};
nRequestID：ID for abandonment execution declaration entry request and this ID is designated and managed by user.

Return value:

· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.47. ReqAbandonExecOrderAction method
This version doesn't support this method before Trading System support options trading.
Abandonment execution declaration operation request
Function prototype：

int ReqAbandonExecOrderAction(

CShfeFtdcAbandonExecOrderActionField *pAbandonExecOrderAction,

int nRequestID);
Parameter：

pAbandonExecOrderAction: Address pointing to structure of abandonment execution declaration operation. Structure of abandonment execution declaration operation is as below:
struct CShfeFtdcAbandonExecOrderActionField {

/// Abandonment Execution declaration ID

TShfeFtdcExecOrderSysIDType
AbandonExecOrderSysID;

/// Abandonment Execution declaration Local ID

TShfeFtdcOrderLocalIDType
AbandonExecOrderLocalID;

/// Flag of Order operation

TShfeFtdcActionFlagType
ActionFlag;

/// member code

TShfeFtdcParticipantIDType
ParticipantID;

/// client code

TShfeFtdcClientIDType
ClientID;

/// transaction user’s code

TShfeFtdcUserIDType
UserID;

/// Local No. of operation

TShfeFtdcOrderLocalIDType
ActionLocalID;

/// business unit

TShfeFtdcBusinessUnitType
BusinessUnit;

/// business local ID

TShfeFtdcBusinessLocalIDType
BusinessLocalID;
};
nRequestID：ID for abandonment execution declaration operation request and this ID is designated and managed by user.

Return value:

· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.48. ReqQryAbandonExecOrder method
This version doesn't support this method before Trading System support options trading.
Request of abandonment execution declaration query.
Function prototype：

int ReqQryAbandonExecOrder (

CShfeFtdcQryAbandonExecOrderField *pQryAbandonExecOrder,

int nRequestID)；
Parameter：

pQryAbandonExecOrder：Address pointing to structure of abandonment execution declaration query. Structure of abandonment execution declaration query is as below:
struct CShfeFtdcQryAbandonExecOrderField

{

/// the starting member code

TShfeFtdcParticipantIDType
PartIDStart;

/// the ending member code

TShfeFtdcParticipantIDType
PartIDEnd;

/// abandonment execution declaration ID

TShfeFtdcExecOrderSysIDType
AbandonExecOrderSysID;

/// contract code

TShfeFtdcInstrumentIDType
InstrumentID;

/// client code

TShfeFtdcClientIDType
ClientID;

/// transaction user’s code

TShfeFtdcUserIDType
UserID;

/// starting time

TShfeFtdcTimeType
TimeStart;

/// ending time

TShfeFtdcTimeType
TimeEnd;

};
nRequestID：ID for abandonment execution declaration entry request and this ID is designated and managed by user.

Return value:

· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
2.2.49. ReqQuoteDemand method
This version doesn't support this method before Trading System support options trading market maker mechanism.
Request of quote query entry.
Function prototype：

int ReqQuoteDemand (

CShfeFtdcInputQuoteDemandField *pInputQuoteDemand,

int nRequestID)；
Parameter：

pInputQuoteDemand： Address pointing to structure of quote query entry. Structure of quote query entry is as below:
struct CShfeFtdcInputQuoteDemandField{

/// member code

TShfeFtdcParticipantIDType
ParticipantID;

/// client code

TShfeFtdcClientIDType
ClientID;

/// transaction user's code

TShfeFtdcUserIDType
UserID;

/// contract code

TShfeFtdcInstrumentIDType
InstrumentID;

/// quote demand local input ID

TShfeFtdcOrderLocalIDType
QuoteDemandLocalID;

};
nRequestID：ID for quote query entry request and this ID is designated and managed by user.

Return value:

· 0, represents success;
· -1, represents the network connection failure;

· -2, indicates that the unprocessed requests exceed the allowable quantity;
· -3, indicates that the number of requests sent per second exceeds the allowable quantity.
1. TraderAPI—A Development Example
// tradeapitest.cpp :

// A simple example that describes the use of interface for CShfeFtdcTraderApi and CShfeFtdcTraderSpi.

// This example shows the process of order entry operation

#include <stdio.h>

#include <windows.h>

#include "FtdcTraderApi.h"

// Flag of whether or not the order entry operation is completed.
// Create a manual reset event with no signal
HANDLE g_hEvent = CreateEvent(NULL, true, false, NULL);

// Member code
TShfeFtdcParticipantIDType g_chParticipantID;

// Transaction user's code
TShfeFtdcUserIDType g_chUserID;

class CSimpleHandler : public CShfeFtdcTraderSpi
{

public:

// Constructed function that needs an effective pointer pointing to the CShfeFtdcMduserApi example

CSimpleHandler(CShfeFtdcTraderApi *pUserApi) : m_pUserApi(pUserApi) {}

~CSimpleHandler() {}

// Member system needs to complete the login step when it has created communication connection with trading system.

virtual void OnFrontConnected()

{

CShfeFtdcReqUserLoginField reqUserLogin;

// get ParticipantID

printf("participantid:");

scanf("%s", &g_chParticipantID);

strcpy(reqUserLogin.ParticipantID, g_chParticipantID);

// get userid

printf("userid:");

scanf("%s", &g_chUserID);

strcpy(reqUserLogin.UserID, g_chUserID);

// get password

printf("password:");

scanf("%s", &reqUserLogin.Password);

// Send the login request

m_pUserApi->ReqUserLogin(&reqUserLogin, 0);

}

// This method will be called when member system disconnect its communication with trading system.

virtual void OnFrontDisconnected(int nReason)

{

// In this case, API will automatically conduct reconnection while member system may do nothing.

printf("OnFrontDisconnected.\n");

}

// After member system sent the login request, this method will be called to notify member system of whether this login is successful or not.

virtual void OnRspUserLogin(CShfeFtdcRspUserLoginField *pRspUserLogin, CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast)

{

printf("OnRspUserLogin:\n");

printf("ErrorCode=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID, pRspInfo->ErrorMsg);

printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);

if (pRspInfo->ErrorID != 0) {

// In case of login failure, member system will be required to conduct the error-processing.

printf("Failed to login, errorcode=%d errormsg=%s requestid=%d chain=%d", pRspInfo->ErrorID, pRspInfo->ErrorMsg, nRequestID, bIsLast);

exit(-1);

}

// In case of successful login, the order entry request will be sent.

CShfeFtdcInputOrderField ord;

memset(&ord, 0, sizeof(ord));

// Member code

strcpy(ord.ParticipantID, g_chParticipantID);

// Client code

strcpy(ord.ClientID, "12345");

// Transaction user's code

strcpy(ord.UserID, g_chUserID);

// Contract code

strcpy(ord.InstrumentID, "cn0601");

// Conditions of order price

ord.OrderPriceType = SHFE_FTDC_OPT_LimitPrice;

// Buy-sell direction

ord.Direction = SHFE_FTDC_D_Buy;

// Flag of position opening and closing-out in a portfolio

strcpy(ord.CombOffsetFlag, "0");

// Flag of speculation and hedge in a portfolio

strcpy(ord.CombHedgeFlag, "1");

// Price

ord.LimitPrice = 50000;

// Quantity

ord.VolumeTotalOriginal = 10;

// Type of valid period

ord.TimeCondition = SHFE_FTDC_TC_GFD;

// GTD DATE

strcpy(ord.GTDDate, "");

// Volume type

ord.VolumeCondition = SHFE_FTDC_VC_AV;

// The Min.volume

ord.MinVolume = 0;

// Trigger conditions

ord.ContingentCondition = SHFE_FTDC_CC_Immediately;

// Stop-loss price

ord.StopPrice = 0;

// Reasons for forced closing-out

ord.ForceCloseReason = SHFE_FTDC_FCC_NotForceClose;

// Local order No.

strcpy(ord.OrderLocalID, "0000000001");

// Flag of auto-suspension

ord.IsAutoSuspend = 0;

m_pUserApi->ReqOrderInsert(&ord, 1);

}

// Response to order entry

virtual void OnRspOrderInsert(CShfeFtdcInputOrderField *pInputOrder, CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast)

{

// Output of order entry result

printf("ErrorCode=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID, pRspInfo->ErrorMsg);

// Notification o completion of order entry

SetEvent(g_hEvent);

};

///Return on order

virtual void OnRtnOrder(CShfeFtdcOrderField *pOrder)

{

printf("OnRtnOrder:\n");

printf("OrderSysID=[%s]\n", pOrder->OrderSysID);

}

// Notification on erroneous user request

virtual void OnRspError(CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast) {

printf("OnRspError:\n");

printf("ErrorCode=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID, pRspInfo->ErrorMsg);

printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);

// Member system is required to conduct error-processing

exit(-1);

}

private:

// Pointer pointing to the example of CShfeFtdcMduserApi

CShfeFtdcTraderApi *m_pUserApi;

};

int main()

{

// Generate an example of CShfeFtdcTraderApi

CShfeFtdcTraderApi *pUserApi = CShfeFtdcTraderApi::CreateFtdcTraderApi();

// Generate an incident-handling example

CSimpleHandler sh(pUserApi);

// Register an incident-handling example

pUserApi->RegisterSpi(&sh);

// Subscription of private stream

// TERT_RESTART: to re-transmit from current trading dayRetransmission starts from this business day

// TERT_RESUME: to re-transmit by resuming and continuing from last transmission The previously-received resuming of transmission

// TERT_QUICK: Only transmit the contents of private stream after login

pUserApi->SubscribePrivateTopic(TERT_RESUME);

// Subscription of public stream

// TERT_RESTART: to re-transmit from current trading day

// TERT_RESUME: to re-transmit by resuming and continuing from last transmission

// TERT_QUICK:Only transmit the contents of public stream after login

pUserApi->SubscribePublicTopic(TERT_RESUME);

//Set the heartbeat timout period

pUserApi->SetHeartbeatTimeout(19);

// Set the address of NameServer of trading system front-end

pUserApi->RegisterNameServer("tcp://172.16.0.31:17001");

// Enable member system to create connection with trading system

pUserApi->Init();

// Member system waits for the completion of order operation.

WaitForSingleObject(g_hEvent, INFINITE);

// Releas of API example

pUserApi->Release();

return 0;

}
Part III. MduserAPI Reference Manual

Part III is designed for Quotation Receiving System developers, covering:

Chapter 1 provided the table of the interfaces and methods that are available in MduserAPI from both a system management and a functional/business service perspective; also, public availability of interfaces to Exchange Members provided by the current version is listed.

Chapter 2 is the actual reference manual for MduserAPI.

Chapter 3 is a programming example for MduserAPI.

Chapter 4 is the error code, enumeration value and data type list adopted within the MduserAPI.

1. Categories of MduserAPI Interfaces
1.1. Management Interfaces

MduserAPI management interfaces control the life cycle and operating parameter of the API.

	Interface Type
	Interface name
	Explanation

	Lifecycle Management Interfaces
	CShfeFtdcMduserApi:: CreateFtdcMduserApi
	Create an MduserApi instance

	
	CShfeFtdcMduserApi::GetVersion
	Get API version

	
	CShfeFtdcMduserApi:: Release
	Delete the instance of the interface

	
	CShfeFtdcMduserApi:: Init
	Initialization

	
	CShfeFtdcMduserApi:: Join
	Wait for the Interface thread to end the run

	Parameter Management Interfaces
	CShfeFtdcMduserApi:: RegisterSpi
	Register to callback interface

	
	CShfeFtdcMduserApi:: RegisterFront
	Register to FEP network address

	
	CShfeFtdcTraderApi:: RegisterNameServer
	Register to NameServer Network address

	
	CShfeFtdcMduserApi:: SetHeartbeatTimeout
	Set the heartbeat timeout

	Subscription Interfaces
	CShfeFtdcMduserApi:: SubscribeMarketDataTopic
	Subscribe to quotation

	Communication Status Interfaces
	CShfeFtdcMduserSpi:: OnFrontConnected
	The method is called when communication with the Trading System connection (prior to login) is established.

	
	CShfeFtdcMduserSpi:: OnFrontDisconnected
	This method is called when communication with the Trading System is disconnected.

	
	CShfeFtdcMduserSpi:: OnHeartBeatWarning
	The method is called when no heartbeat message is received after a long time.

1.2. Service Interfaces
	Service Type
	Service
	Request Interface / Response Interface
	Data Stream

	Login-Logout
	Login
	CShfeFtdcMduserApi::ReqUserLogin
CShfeFtdcMduserSpi::OnRspUserLogin
	N/A

	
	Logout
	CShfeFtdcMduserApi::ReqUserLogout
CShfeFtdcMduserSpi::OnRspUserLogout
	Dialog Stream

	Subscription
	Topic/Theme Subscription
	CShfeFtdcMduserApi::ReqSubscribeTopic
CShfeFtdcMduserSpi::OnRspSubscribeTopic
	Dialog Stream

	
	Query Subscription
	CShfeFtdcMduserApi::ReqQryTopic
CShfeFtdcMduserSpi::OnRspQryTopic
	Query Stream

	Quotation
	Quotation Notification
	CShfeFtdcMduserSpi::OnRtnDepthMarketData
	Quotation Stream

	Disaster recovery
	Data cancellation
	CShfeFtdcMduserSpi::OnRtnFlowMessageCancel
	Quotation Stream

2. MduserAPI Reference Manual
2.1. CShfeFtdcMduserSpi Interface

CShfeFtdcMduserSpi implements/realizes event notification interface. User has to derive the CShfeFtdcMduserSpi interface and write event-handling methods/functions to handle events of interest.
2.1.1. OnFrontConnected Method
After the TCP virtual link path connection between Quotation Receiving System and the NGES Trading System is established, the method is called. The mentioned connection is automatically established by the API.

Function Prototype:

void OnFrontConnected()；

Note: The fact that the OnFrontConnected is called only implies that the TCP connection is successful; the Quotation Receiving System must login separately to carry out any service operations afterwards. Login failure would not callback this method.
2.1.2. OnFrontDisconnected Method
After connection between Quotation Receiving System and the NGES Trading System is broken, the method is called. In this case, API would automatically re-connect, and Quotation Receiving System does not need to deal with the re-connection. The automatically re-connected address may be the originally registered address or other available communication addresses that are supported by the system, which is decided by the application.

Function Prototype:

void OnFrontDisconnected (int nReason)；

Parameter：nReason: disconnection reasons
· 0x1001 network reading failure

· 0x1002 network writing failure

· 0x2001 heartbeat receiving timeout

· 0x2002 heartbeat sending timeout

· 0x2003 error message received

2.1.3. OnHeartBeatWarning Method
This is for heartbeat timeout warning, called if packets/message is not received after a long time.
Function Prototype:

void OnHeartBeatWarning(int nTimeLapse)；
2.1.4. Parameter: nTimeLapse：time lapse from last time receiving the message (in seconds)
2.1.5. OnPackageStart Method

This is the method for notification of start of message/packets callback. After the API receives message/packet, it first calls this method, followed by the callback of the various data fields and then it calls a method for notification of end of message callback.

Function Prototype:

void OnPackageStart (int nTopicID, int nSequenceNo)；

Parameters:

nTopicID： Topic ID (e.g. private stream, public stream, quotation stream etc)
nSequenceNo：Message Sequence Number

2.1.6. OnPackageEnd Method

This is the notification for end of message/packets callback. After the API receives a message/packet, it first calls the method for notification of start of message/packet callback, followed by the callback of the various data fields and then it calls this method.

Function Prototype:

void OnPackageEnd (int nTopicID, int nSequenceNo)；

Parameters:

nTopicID： Topic ID (e.g. private stream, public stream, quotation stream etc)
nSequenceNo：Message Sequence Number

2.1.7. OnRspUserLogin Method
After the Quotation Receiving System sends out login request, and when the Trading System sends back the response, the Trading System calls this method to inform the Quotation Receiving System whether the login is successful.

Function Prototype:

void OnRspUserLogin(

CShfeFtdcRspUserLoginField *pRspUserLogin,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameters:

pRspUserLogin：returns the address for user login information structure:

struct CShfeFtdcRspUserLoginField {

///Trading day

TShfeFtdcDateType
TradingDay;

///Successful log in time

TShfeFtdcTimeType
LoginTime;

///Maximum order’s local ID, NOT USED

TShfeFtdcOrderLocalIDType
MaxOrderLocalID;

/// Transaction user’s code

TShfeFtdcUserIDType
UserID;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

///Trading System Name

TShfeFtdcTradingSystemNameType
TradingSystemName;

///Data Center ID

TShfeFtdcDataCenterIDType
DataCenterID;

///Current size of member’s private flow

TShfeFtdcSequenceNoType
PrivateFlowSize;

/// Current size of private flow of trader/user

TShfeFtdcSequenceNoType
UserFlowSize;

///action day

TShfeFtdcDateType ActionDay;
};
Note：ActionDay is an additional field. When the business occurring day is required, ActionDay should be used; When the trading day is needed, TradingDay should be used. When the field of ActionDay is not supported by SHFE, it should be left as empty.

pRspInfo: returns the address for user response information. Special attention: when there are continuous successful response data, some returned value in between may be Null, but the 1st returned value would never be Null; this is the same below. Error ID 0 means successful operation; this is the same below. Response information/message structure is:

struct CShfeFtdcRspInfoField {

/// Error code

TShfeFtdcErrorIDType
ErrorID;

/// Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
nRequestID：returns the user login request ID; this ID is specified by the user upon login
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.8. OnRspUserLogout Method

After Quotation Receiving System send out logout request, the Trading System calls this method to send back the response to inform the Quotation Receiving System whether logout is successful.

Function Prototype:

void OnRspUserLogout(

CShfeFtdcRspUserLogoutField *pRspUserLogout,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameters:

pRspUserLogout：returns the address for user logout information/message.

User logout information/message structure:

struct CShfeFtdcRspUserLogoutField {

///Transaction user's code

TShfeFtdcUserIDType
UserID;

///Member code

TShfeFtdcParticipantIDType
ParticipantID;

};
pRspInfo: returns address for user response information/message. The structure:

struct CShfeFtdcRspInfoField {

/// Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};

nRequestID：returns user logout request ID; this ID is specified by the user upon logout
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.9. OnRspSubscribeTopic Method
This method is for the reply on topic/theme subscription. After Quotation Receiving System sends out topic subscription instruction, the Trading System calls it to send back the response.

Function Prototype:

void OnRspSubscribeTopic (

CShfeFtdcDisseminationField *pDissemination,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameters:
pDissemination：points to the address for subscription topic structure, including topic subscribed and starting message sequence number. Subscription topic structure is:
struct CShfeFtdcDisseminationField {

///Sequence series

TShfeFtdcSequenceSeriesType
SequenceSeries;

///Sequence number

TShfeFtdcSequenceNoType
SequenceNo;
};

pRspInfo：points to the address for response information/message structure. The structure:
struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors:

Error code
Error message

 Possible reasons

66

User hasn't logged in yet

 Not logged in yet

nRequestID：returns subscribed topic request ID; this ID is specified by user upon subscription
bIsLast：indicates whether current return is the last return with respect to the nRequestID
2.1.10. OnRspQryTopic Method

This method is for the reply on the query of topic. After Quotation Receiving System sends out topic query instruction, the Trading System calls this method to send back the response.
Function Prototype:

void OnRspQryTopic (

CShfeFtdcDisseminationField *pDissemination,

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast)；
Parameters:
pDissemination：points to the address for topic query structure, including topic queried and number of messages in the topic. Topic query structure is:
struct CShfeFtdcDisseminationField {

///Sequence series

TShfeFtdcSequenceSeriesType
SequenceSeries;

///Sequence number

TShfeFtdcSequenceNoType
SequenceNo;
};

pRspInfo：points to the address for response information/message structure. The response information/message structure is:
struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error message

TShfeFtdcErrorMsgType
ErrorMsg;

};
The possible errors:

Error code
Error message

 Possible reasons

66

User hasn't logged in yet

 Not logged in yet

nRequestID：returns the topic query request ID, specified upon sending topic query request.
bIsLast：indicates whether current return is the last return with respect to the nRequestID.

2.1.11. OnRspError Method

This method is for error notification with respect to user request.

Function Prototype:

void OnRspError(

CShfeFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);
Parameters:

pRspInfo：returns the address for response information/message structure. The response information/message structure is:
struct CShfeFtdcRspInfoField {

///Error code

TShfeFtdcErrorIDType
ErrorID;

///Error Message

TShfeFtdcErrorMsgType
ErrorMsg;

};

nRequestID：returns the user operating request ID; this ID is specified upon sending request.
bIsLast：indicates whether current return is the last return with respect to the nRequestID.

2.1.12. OnRtnDepthMarketData Method
Quotation notification: Whenever there is any change to quotation, the Trading System would inform Quotation Receiving System, and this method is called.

Function Prototype:

void OnRtnDepthMarketData (CShfeFtdcDepthMarketDataField *pTrade)；

Parameter:

pDepthMarketData：points to the address for quotation structure. Note: some fields in the quotation are not used. The quotation structure:
struct CShfeFtdcDepthMarketDataField

{

///Business day

TShfeFtdcDateType
TradingDay;

///Settlement group's code

TShfeFtdcSettlementGroupIDType
SettlementGroupID;

///Settlement No.

TShfeFtdcSettlementIDType
SettlementID;

/// Latest price

TShfeFtdcPriceType
LastPrice;

/// Yesterday's settlemnt

TShfeFtdcPriceType
PreSettlementPrice;

///Yesterday's close

TShfeFtdcPriceType
PreClosePrice;

///Yesterday's open interest

TShfeFtdcLargeVolumeType
PreOpenInterest;

///Today's open

TShfeFtdcPriceType
OpenPrice;

///The highest price

TShfeFtdcPriceType
HighestPrice;

///The lowest price

TShfeFtdcPriceType
LowestPrice;

///Quantity

TShfeFtdcVolumeType
Volume;

///Turnover

TShfeFtdcMoneyType
Turnover;

///Open interest

TShfeFtdcLargeVolumeType
OpenInterest;

///Today's close

TShfeFtdcPriceType
ClosePrice;

///Today's settlement

TShfeFtdcPriceType
SettlementPrice;

///The upward price limit

TShfeFtdcPriceType
UpperLimitPrice;

///The downward price limit

TShfeFtdcPriceType
LowerLimitPrice;

///Yesterday's Delta value, not used

TShfeFtdcRatioType
PreDelta;

///Today's Delta value，not used

TShfeFtdcRatioType
CurrDelta;

///Last modification time

TShfeFtdcTimeType
UpdateTime;

/// The last modified millisecond

TShfeFtdcMillisecType UpdateMillisec;

///Contract code

TShfeFtdcInstrumentIDType
InstrumentID;

///Bid price 1

TShfeFtdcPriceType
BidPrice1;

/// Bid volume 1

TShfeFtdcVolumeType
BidVolume1;

///Ask price 1

TShfeFtdcPriceType
AskPrice1;

///Ask volume 1

TShfeFtdcVolumeType
AskVolume1;

/// Bid price 2

TShfeFtdcPriceType
BidPrice2;

/// Bid volume 2

TShfeFtdcVolumeType
BidVolume2;

/// Ask price 2

TShfeFtdcPriceType
AskPrice2;

/// Ask volume 2

TShfeFtdcVolumeType
AskVolume2;

///Bid price 3

TShfeFtdcPriceType
BidPrice3;

///Bid volume 3

TShfeFtdcVolumeType
BidVolume3;

/// Ask price 3

TShfeFtdcPriceType
AskPrice3;

///Ask volume 3

TShfeFtdcVolumeType
AskVolume3;

///Bid price 4

TShfeFtdcPriceType
BidPrice4;

///Bid volume 4

TShfeFtdcVolumeType
BidVolume4;

///Ask price 4

TShfeFtdcPriceType
AskPrice4;

///Ask volume 4

TShfeFtdcVolumeType
AskVolume4;

///Bid price 5

TShfeFtdcPriceType
BidPrice5;

///Bid volume 5

TShfeFtdcVolumeType
BidVolume5;

/// Ask price 5

TShfeFtdcPriceType
AskPrice5;

///Ask price 5

TShfeFtdcVolumeType
AskVolume5;
///Action day

TShfeFtdcDateType ActionDay;
};
Note：ActionDay is a new field. ActionDay is used for business ocuring day, and TradingDay is used when the trading day is required. When ActionDay is not supported by SHFE, it should be left as empty.

2.1.13. OnRtnFlowMessageCancel method

Notification for data stream cancellation. After disaster recovery of the Trading System, when user re-logins the Trading System and subscribes data stream (private stream or public stream), the Trading System will automatically call this function to inform Member System that some messages in this data stream are cancelled.
Function prototype:

void OnRtnFlowMessageCancel(

CShfeFtdcFlowMessageCancelField *pFlowMessageCancel)；

Parameter:
pFlowMessageCancel: pointer to CShfeFtdcFlowMessageCancelField, whose structure is as below:
struct CShfeFtdcFlowMessageCancelField

{

/// Sequence Series

TShfeFtdcSequenceSeriesType
SequenceSeries;

/// Trading Day

TShfeFtdcDateType
TradingDay;

/// Data Center ID

TShfeFtdcDataCenterIDType
DataCenterID;

/// Start Sequence No.

TShfeFtdcSequenceNoType
StartSequenceNo;

/// End Sequence No.

TShfeFtdcSequenceNoType
EndSequenceNo;

};
SequenceSeries：the data stream series to be cancelled (private stream or public stream)
The messages to be cancelled is between: (StartSequenceNo,EndSequenceNo）
2.2. CShfeFtdcMduserApi Interfaces

Functions offered by CShfeFtdcMduserApi interfaces include login/logout, quotation subscription etc.

2.2.1. CreateFtdcMduserApi Method

This is to creaste an instance of the CShfeFtdcMduserApi; this cannot be created with a “new”.

Function Prototype:

static CShfeFtdcMduserApi *CreateFtdcMduserApi(const char *pszFlowPath = "");
Parameter:

pszFlowPath：constant character pointer, used to point to a file catalog/directory that stores the status of the bulletin/news sent by the Trading System. The default value is the current catalog/location/directory.

Return Value：This returns a pointer that point to an instance of the CShfeFtdcMduserApi.
2.2.2. GetVersion Method

This is to get the API version.

Function Prototype:

const char *GetVersion(int &nMajorVersion, int &nMinorVersion) ;

Parameters:

nMajorVersion：returns the main/primary version number
nMinorVersion：returns the minor/secondary version number
Returned Value：

This returns a constant pointer that point to the versioning identification string.
2.2.3. Release Method

This is to release an instance of CShfeFtdcMduserApi; this cannot use the delete Method.
Function Prototype:

void Release()；
2.2.4. Init Method

This is to establish the connection between Quotation Receiving System and the Trading System; after the connection is established, user can proceed to login.

Function Prototype:

void Init()；
2.2.5. Join Method
Quotation Receiving System waits for the end of an interface thread instance.

Function Prototype:

void Join()；
2.2.6. GetTradingDay Method

This is to get the current trading day. Only after successfully login to the Trading System, the correct value would be obtained.

Function Prototype:

const char *GetTradingDay()；
Return Value:

This returns a constant pointer that point to the date information character string.
2.2.7. RegisterSpi Method
This is to register to an instance derived from CShfeFtdcMduserSpi instance class; this instance would be used to complete events handling.

Function Prototype:

void RegisterSpi(CShfeFtdcMduserSpi *pSpi) ;

Parameter:

pSpi: realises/implements the pointer for ShfeFtdcTraderSpi interface instance.

2.2.8. RegisterFront Method

This is to set network communication address for the Exchange FEP. The Trading System has multiple FEP, and a user can concurrently register to multiple network communication addresses of the FEP.

This method has to be called before the Init Method is called.

Function Prototype:

void RegisterFront(char *pszFrontAddress);

Parameter:

pszFrontAddress：a pointer that poits to the FEP network communication address. The server address is in the format “protocol://ipaddress:port”, e.g. “tcp://127.0.0.1:17001”. “tcp”in the example is the transmission protocol, “127.0.0.1” represents the server address, and “17001” represent s the server port number.
2.2.9. RegisterNameServer Method
Set the network communication address of the Exchange's NameServer to get the list of quotation service. Since trading system has multiple NameServers, user may concurrently register multiple network communication addresses of NameServer.

This method needs to be called before the Init method.

Function prototype：

void RegisterNameServer (char *pszNsAddress);

Parameter：
pszNsAddress：Pointer pointig to network communication address of the Exchange's NameServer. Format of network address: “protocol://ipaddress:port” such as ”tcp://127.0.0.1:17001”. “tcp” represents the transmission protocol, “127.0.0.1” represents the server's address, and “17001” represents the port No. of server.

2.2.10. SetHeartbeatTimeout Method

This is to set heartbeat timeout limit for network communication. After the connection between MduserAPI and the TCP of the Trading System is established, it would send regular heartbeat to detect whether the connection is functioning well. This method is used to set the time for the detecting heartbeat timeout. The Exchange suggests members to set the timeout to be between 10s and 30s.
Function Prototype:

virtual void SetHeartbeatTimeout(unsigned int timeout);

Parameter:

Timeout: heartbeat timeout time limit (in seconds). If no information/message is received from the Trading System after “timeout/2” seconds, CShfeFtdcMduserApi::OnHeartBeatWarning() would be called/triggered. If no information/message is received from the Trading System after “timeout” seconds, the connection would be stopped, and CShfeFtdcMduserApi ::OnFrontDisconnected() would be called/triggered
2.2.11. SubscribeMarketDataTopic Method
This is to subscribe to quotations specifically required by user. After the subscription, the Trading System would proactively send out quotation notification to Quotation Receiving System.

Function Prototype:

void SubscribeMarketDataTopic(int nTopicID, TE_RESUME_TYPE nResumeType);

Parameters:

nTopicID：Quotation topic/subject/theme needed to be subscribed, announced by the Exchange
nResumeType：Quotation re-transmission method type:
· TERT_RESTART：to re-transmit from current trading day
· TERT_RESUME：to re-transmit by resuming and continuing from last transmission
· TERT_QUICK：first transmit the quotation snapshot, and then transmit all quotation after that. The Exchange recommend member to use this method to recover quotation quickly.
2.2.12. ReqUserLogin Method

This is the user login request.

Function Prototype:

int ReqUserLogin(

CShfeFtdcReqUserLoginField *pReqUserLoginField,

int nRequestID)；
Parameters:

pReqUserLoginField：points to the address for login request structure:
struct CShfeFtdcReqUserLoginField {

///Trading Day

TShfeFtdcDateType
TradingDay;

///Trading User ID

TShfeFtdcUserIDType
UserID;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

///Password

TShfeFtdcPasswordType
Password;

///User-end product information

TShfeFtdcProductInfoType
UserProductInfo;

///Interface-port product information, NOT USED

TShfeFtdcProductInfoType
InterfaceProductInfo;

///Protocol information, NOT USED

TShfeFtdcProtocolInfoType
ProtocolInfo;

///Data Center ID

TShfeFtdcDataCenterIDType
DataCenterID;
};

User needs to fill in the “UserProductInfo” field, i.e. product information for Quotation Receiving System, such as software development vendor, version number etc, e.g.”SFIT Mduser V100”—the Quotation Receiving System developed by SHIT and the version number.

If it is the first login, then “DataCenterID” should be 0 or the primary data center ID released by the Exchange. The DataCenterID value returned from previous login reply should be filled in for future login.
nRequestID：the request ID for login request; it is specified and managed by the user.
Returned Value:

· 0,represents successful.

· -1,represents the network connection failure;

· -2,indicates that the unprocessed requests exceed the allowable quantity;
· -3,indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.13. ReqUserLogout Method

This is the user logout request.

Function Prototype:

int ReqUserLogout(

CShfeFtdcReqUserLogoutField *pReqUserLogout,

int nRequestID)；
Parameters:

pReqUserLogout：points to the address for logout request structure. The structure:

struct CShfeFtdcReqUserLogoutField {

///Trading User ID

TShfeFtdcUserIDType
UserID;

///Member ID

TShfeFtdcParticipantIDType
ParticipantID;

};
nRequestID：the request ID for logout request; it is specified and managed by the user.
Returned Value:

· 0,represents successful.

· -1,represents the network connection failure;

· -2,indicates that the unprocessed requests exceed the allowable quantity;
· -3,indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.14. ReqSubscribeTopic Method
This is the request to subscribe to topic/theme. This should be called after login.

Function Prototype:

int ReqSubscribeTopic (

CShfeFtdcDisseminationField * pDissemination,

int nRequestID)；

Parameters:

pDissemination：points to the address for subscribed topic structure, including topic to be subscribed as well as the starting message sequence number. The structure:
struct CShfeFtdcDisseminationField {

///Sequence series number

TShfeFtdcSequenceSeriesType
SequenceSeries;

///Sequence number

TShfeFtdcSequenceNoType
SequenceNo;
};

SequenceSeries: topics to be subscribed
SequenceNo:=-1 to re-transmit using the “QUICK” method
= other value, to resume transmission from this sequence number onwards
nRequestID：the request ID; it is specified and managed by the user.
Returned Value:

· 0,represents successful.

· -1,represents the network connection failure;

· -2,indicates that the unprocessed requests exceed the allowable quantity;
· -3,indicates that the number of requests sent per second exceeds the allowable quantity.

2.2.15. ReqQryTopic Method

This is the request for querying topic/theme. This should be called after login.

Function Prototype:

int ReqQryTopic (

CShfeFtdcDisseminationField * pDissemination,

int nRequestID)；
Parameters:

pDissemination: points to the address for topic query structure, including topic to be queried. The structure:
struct CShfeFtdcDisseminationField {

///Sequence Series

TShfeFtdcSequenceSeriesType
SequenceSeries;

///Sequence Number

TShfeFtdcSequenceNoType
SequenceNo;
};

SequenceSeries：topics to be queried
SequenceNo：no need to fill in
nRequestID：the request ID; it is specified and managed by the user.
Returned Value:

· 0,represents successful.

· -1,represents the network connection failure;

· -2,indicates that the unprocessed requests exceed the allowable quantity;
· -3,indicates that the number of requests sent per second exceeds the allowable quantity.

3. MduserAPI—A Development Example

// mdusertest.cpp :
// A simple example to illustrate usage of CShfeFtdcMduserApi & CShfeFtdcMduserSpi interfaces
#include <stdio.h>

#include <string.h>

#include "FtdcMduserApi.h"

class CSimpleHandler : public CShfeFtdcMduserSpi

{

public:

//constructed function, requires a valid pointer to point to an instance of CShfeFtdcMduserApi

CSimpleHandler(CShfeFtdcMduserApi *pUserApi) : m_pUserApi(pUserApi) {}

~CSimpleHandler() {}

// After the communication connection between Quotation Receiving System and the Trading System is established, Quotation Receiving System would require log in.

void OnFrontConnected() {

CShfeFtdcReqUserLoginField reqUserLogin;

strcpy(reqUserLogin.ParticipantID, "P001");

strcpy(reqUserLogin.UserID, "U001");

strcpy(reqUserLogin.Password, "P001");

m_pUserApi->ReqUserLogin(&reqUserLogin, 0);

}

// when the communication connection between Quotation Receiving System and the Trading System is interrupted, this method is called.

void OnFrontDisconnected() {

// when disconnection happens, API would re-connect automatically, Quotation Receiving System does not need to handle.

printf("OnFrontDisconnected.\n");

}

// after the Trading System sends out reply for login request, this method is called to inform Quotation Receiving System whether the login is successful

void OnRspUserLogin(CShfeFtdcRspUserLoginField *pRspUserLogin, CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast) {

printf("OnRspUserLogin: ErrorCode=[%d], ErrorMsg=[%s]\n",
 pRspInfo->ErrorID, pRspInfo->ErrorMsg);

printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);

if (pRspInfo->ErrorID != 0) {

//login failure, Quotation Receiving System would need to do error handling

printf("Failed to login, errorcode=%d errormsg=%s requestid=%d chain=%d", pRspInfo->ErrorID, pRspInfo->ErrorMsg, nRequestID, bIsLast);

}

}

//Depth quotation notification, the Trading System would inform automatically.

void OnRtnDepthMarketData(CShfeFtdcDepthMarketDataField *pMarketData) {

//Quotion Receiving System would deal with the returned data based on its own need

}

//error notification with respect to user request

void OnRspError(CShfeFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast) {

printf("OnRspError:\n");

printf("ErrorCode=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID, pRspInfo->ErrorMsg);

printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);

// Quotation Receiving System would need to do error handling

}

private:

// a pointer that points to an instance of CShfeFtdcMduserApi

CShfeFtdcMduserApi *m_pUserApi;

};

int main()

{

// creats an instance of CShfeFtdcTraderApi

CShfeFtdcMduserApi *pUserApi = CShfeFtdcMduserApi::CreateFtdcMduserApi();

// creates an instance of event handling

CSimpleHandler sh(pUserApi);

// register to an instance of event handling

pUserApi->RegisterSpi(&sh);

// register to required depth quotation topic

/// TERT_RESTART: to re-transmit from current trading day

/// TERT_RESUME: to re-transmit by resuming and continuing from last transmission
/// TERT_QUICK: first transmit the quotation snapshot, and then transmit all quotation after that

pUserApi-> SubscribeMarketDataTopic (102, TERT_RESUME);

//set the timeout for heartbeat

pUserApi->SetHeartbeatTimeout(19);
// set the Exchange FEP NameServer address

pUserApi->RegisterNameServer("tcp://192.168.1.1:17011");

// starts connection with quotation FEP of the Trading System

pUserApi->Init();

// release MduserAPI instance

pUserApi->Release();

 return 0;

Part IV. Appendix

1. Error Code List—To Translate Upon Request
	Error No.
	Error message
	Reasons for error

	1
	Incorrect dialogue
	Illegal dialogue was found in each operation

	2
	Contract cannot be found
	Contract cannot be found when inserting order, quote, OTC order or executing the declaration

	3
	Member cannot be found
	 Member cannot be found in each operation

	4
	Client cannot be found
	Client cannot be found in each operation

	6
	Incorrect Order field
	Illegal field value was found on the order when inserting the order（out-of-range of the enumerated value）

	
	
	Forced closing-out reasons was set in non-forced closing-out order when inserting the order

	7
	Erroneous quote field
	Illegal field value was found in the quote when inserting the quote（out-of-range of the enumerated value）

	8
	Incorrect field in order operation
	Illegal field value was found in the order operation at the time of order operation（out-of-range of the enumerated value）

	9
	Incorrect field in quote operation
	Illegal field value was found in the quote operation at the time of quote operation（out-of-range of the enumerated value）

	12
	duplicate order
	Local order No. was duplicate when inserting order or non-standard portfolio order.

	13
	duplicate quote
	Local quote No. was duplicate when inserting quote.

	15
	Client didn't open an account at this member
	It was fount during each operation that the designated client didn't open an account at the designated member.

	16
	IOC to be conducted in continuous trade session.
	Attempt to insert IOC order during continuous trade session.

	17
	GFA to be conducted in call auction session
	Attempt to insert GFA order during non-call-auction session.

	18
	Market price orders are unable to queue
	It was found in inserting market order that time conditions are not IOC

	19
	Quantity restriction shall be put on IOC
	It was found in inserting the order with a quantity restriction of non- arbitrary quantity that time conditions are not IOC

	20
	GTD order had expired
	It was found in inserting the GTD order that GTD data had expired.

	21
	The Min. number exceeds the number of order

	It was found in inserting the order with a Min. number requirement that the Min. number exceeds the number of order.

	22
	The Exchange's data is not in the synchronized state
	It was found during operation of each business that the Exchange's data is not in the synchronized state.

	23
	The settlement group's data is not in the synchronized date
	It was found during operation of each business that the settlement group's data is not in the synchronized state.

	24
	Order cannot be found
	It was found during order operation that order to be operated cannot be found.

	25
	Quote cannot be found
	It was found during quote operation that quote to be operated cannot be found.

	26
	This operation is prohibited by current state
	It was found in inserting the order that the contract's trading status is not the continuous trade, call auction order or call auction balancing

	
	
	At the time of order operation, it was found in activation operation that the contract's trading status is not the continuous trade, call auction order or call auction balancing;

As to other operations:

It was found in non-administrative user that the contract's trading status is not the continuous trade or call auction order;

As for administrative user:

It was found in order cancellation or order suspension that the contract's trading status is "closed";
It was found in other operations that the contract's trading status is not the continuous trade or call auction order.

	
	
	When inserting OTC order, it was found that the contract's trading status is not continuous trade.

	27
	Illegal contract state migration
	It was found in switching the contract’s trading status that this migration doesn't comply with regulations on contract state migration.

	28
	Order has been fulfilled.
	It was found during order operation that order has been fulfilled.

	29
	Order has been cancelled
	It was found during order operation that order has been cancelled.

	31
	The client's open interest is insufficient at the time of closing-out
	It was found during each operation that may cause closing out that client's open interest is insufficient.

	32
	Exceeding client's position limit
	It was found during each operation that is likely to open a position that it has exceeded client's speculative position.

	34
	Exceeding member's position limit
	It was found during each operation that is likely to open a position that it has exceeded member's position limit.

	35
	Account cannot be found
	It was found during each operation that the account shall be used for such operation cannot be found.

	36
	Inadequate capital
	It was found during each operation that there is no sufficient capital in the account.

	37
	Illegal quantity
	During order entry, order operation, OTC order entry and order operation, the number of order is not the positive integral multiple as required by the Min. number of order or exceeds the Max. number of order

	45
	The settlement group's initialization state is not correct.
	It was found during user login that none of settlement group' data has achieved synchronization.

	48
	The price is not the integral multiple of the Min. unit
	It was found during each operation that price is not the integral mutiple of the contract's tick size.

	49
	Price exceeds the upward limit
	It was found during each operation that the price is higher than the contract's upward price limit.

	50
	Price exceeds the downward limit
	It was found during each operation that the price is lower than the contract's downward price limit.

	51
	Not authorized to trade
	It was found during each operation that member is not authorized to trade in the designated contract, or client is not authorized to trade in the designated contract, or trader is not authorized to trade.

	52
	Only can close out position
	It was found during each operation that may result in an opening of position that member only has the right to close out the designated contract, or client only has the right close out the designated contract, or trader only has the right close out a position.

	53
	No such trading role
	It was found in inserting the order, inserting the OTC order or inserting portfolio order that on the designated contract, this member doesn't have the trading role corresponding to such client.

	57
	Operation shall not be conducted by other members
	It was found during each operation that user conduct operation on behalf member to whom he is not subordinate.

	58
	Unmatched user
	It was found during each operation that user for operation doesn't match with user for dialogue.

	59
	duplicate login by user
	It was found during user's login that this user has already logged into the system.

	60
	Incorrect username or password
	It was found during user's login or password modification that username cannot be found or password is incorrect.

	62
	User is not active
	It was found during user's login that this user is not active

	64
	User doesn't belong to this member
	It was found during user's login that user doesn't belong to the designated member.

	65
	Incorrect IP address for login
	It was found during user's login that user' IP address is illegal.

	67
	Didn't log in using this user
	It was found during user's login that user didn't log in using this user.

	66
	User hasn't logged in yet
	It was found during each operation that user hasn’t logged in yet.

	68
	Didn't log in using this member
	It was found during user logout, forced user logout or modification to password that user didn't log in using this member.

	70
	Quote has been cancelled
	It was found during quote operation that quote has been cancelled.

	76
	Order has been suspended
	It was found during suspension of order that order has already been suspended.

	77
	Order has been activated
	It was found during activation of order that order has already been activate.

	78
	Date is not set on GTD order
	It was found in inserting GTD order that GTD date hasn't been designated.

	79
	Unsupported order type
	It was found in inserting various orders that this trade at this moment doesn't support this order type.

	80
	User is not authorized to do so
	Use ordinary user to conduct each operation that only can be conducted by administrative user.

	83
	Stop-loss order is used for continuous trade only
	Attempt to insert stop-loss order during non-continuous trading session.

	84
	Stop-loss order is required to be IOC or GFD
	It was found in inserting stop-loss order that time condition is neither IOC nor GFD

	89
	Incorrect execution declaration field
	illegal field value was found in execution declaration when inserting declaration(out-of-range of the enumerated value)

	90
	Incorrect field in execution declaration operation
	illegal field value was found in execution declaration operation when operating declaration(out-of-range of the enumerated value)

	91
	duplicate execution declaration
	At the time of inserting execution declaration, local execution declaration No. is duplicate.

	92
	Execution declaration has been cancelled.
	It was found during execution declaration operation that declaration has already been cancelled.

	93
	Execution declaration cannot be found
	It was found during execution declaration operation that

to-be-operated declaration cannot be found.

	94
	Execution declaration can only be used for option
	It was found in inserting the execution declaration that the contract is non-option contract.

	95
	The stop-loss price shall be specified on stop-loss order
	It was found in inserting stop-loss order that stop-loss price is not specified.

	96
	Insufficient hedge quota
	It was found during each operation that is likely to open a position that client's hedge quota is insufficient.

	97
	duplicate operation
	At the time of order operation, quote operation or execution declaration operation, the local operation No. is duplicate.

	99
	Operation cannot be conducted by other users
	It was found during order operation that the unauthorized user attempt to operate the order inserted by other users of the same member.

	100
	Incorrect user type
	It was found during trader's login that the user type is quotation user.

	103
	Hedge position on that day cannot be closed out
	Attempt to insert the order for closing out today's position into hedge position.

	104
	Unknown administration command.
	Upon the receipt of administration command, the command type cannot be recognized.

	114
	The best price orders are unable to queue
	It was found in inserting the best price order that time condition is not IOC.

	121
	Erroneous abandonment execution declaration field
	Illegal field value was found in the abandonment execution declaration when inserting the declaration

	122
	Erroneous abandonment execution declaration operation field
	Illegal field value was found in the abandonment execution declaration at the time of abandonment execution declaration operation

	123
	duplicate abandonment execution declaration
	local execution declaration No. was duplicate when inserting execution declaration.

	124
	abandonment execution declaration cancelled
	abandonment execution declaration has been cancelled at the time of abandonment execution declaration operation

	125
	abandonment execution declaration cannot be found
	abandonment execution declaration cannot be found at the time of abandonment execution declaration operation

	126
	abandonment execution declaration can only be used in futures option
	the contract is non-option contract when inserting the abandonment execution declaration

	127
	not in declaration period
	execution declaration is not in definitive period when insert or abandonment execution declaration

	128
	option exercise can only be abandoned for long position
	call seller is not allowed to abandon exercising options

	129
	execution declaration or abandonment execution declaration cannot be open position
	flag of open or closing position is open position when inserting or abandonment execution declaration

	130
	insuffent posiont for reservation application
	call seller’s position for application exceeds holding position when call seller apply for position reservation after option exercised

2. Enumeration Value List—Translated
	Seq. No.
	Description of enumeration
	Prefix of enumeration
	Name of enumeration

	Code description
	Code Name
	Numerical value of code

	1
	Trading role
	ER
	TradingRole
	Broker
	Broker
	1

	
	
	
	
	Proprietary trading
	Host
	2

	
	
	
	
	Market maker
	MarketMaker
	3

	2
	Transaction user type
	UT
	UserType
	Trader
	Trader
	1

	
	
	
	
	Trade manager
	TradeManager
	2

	
	
	
	
	Quotation provider's user
	MDUser
	3

	
	
	
	
	Unauthorized trader
	SingleTrader
	4

	3
	Product type
	PC
	ProductClass
	Futures
	Futures
	1

	
	
	
	
	Option
	Options
	2

	
	
	
	
	Portfolio
	Combination
	3

	
	
	
	
	Spot
	Spot
	4

	
	
	
	
	EFP
	EFP
	5

	4
	Option type
	OT
	OptionsType
	Non-option
	NotOptions
	0

	
	
	
	
	Bullish (call)
	CallOptions
	1

	
	
	
	
	Bearish (put)
	PutOptions
	2

	5
	Trading status of contract
	IS
	InstrumentStatus
	Pre-opening
	BeforeTrading
	0

	
	
	
	
	Non-trading
	NoTrading
	1

	
	
	
	
	Continuous trade
	Continous
	2

	
	
	
	
	Call autction order
	AuctionOrdering
	3

	
	
	
	
	Call autction balancing
	AuctionBalance
	4

	
	
	
	
	Matching of call auction
	AuctionMatch
	5

	
	
	
	
	Close
	Closed
	6

	
	
	
	
	Transaction processing
	TransactionProcessing
	7

	6
	Buy-sell direction
	D
	Direction
	Bid
	Buy
	0

	
	
	
	
	Ask
	Sell
	1

	7
	Type of open interest
	PT
	PositionType
	Net position
	Net
	1

	
	
	
	
	Gross position
	Gross
	2

	8
	Direction of long and short open interest
	PD
	PosiDirection
	Net
	Net
	1

	
	
	
	
	Long
	Long
	2

	
	
	
	
	Short
	Short
	3

	9
	Synchroni-zation state of the Exchange's data
	EDS
	ExchangeDataSyncStatus
	Unsynchronized
	Asynchronous
	1

	
	
	
	
	During synchronization
	Synchronizing
	2

	
	
	
	
	Synchronized
	Synchronized
	3

	10
	Synchroni-zation state of settlemt group's data
	SGDS
	SGDataSyncStatus
	Unsynchronized
	Asynchronous
	1

	
	
	
	
	During synchronization
	Synchronizing
	2

	
	
	
	
	Synchronized
	Synchronized
	3

	11
	Flag of speculation and hedge
	HF
	HedgeFlag
	Speculation
	Speculation
	1

	
	
	
	
	Hedge
	Hedge
	3

	12
	Type of client
	CT
	ClientType
	Natural person
	Person
	0

	
	
	
	
	Legal person
	Company
	1

	
	
	
	
	Investment fund
	Fund
	2

	3
	Reasons for contract to enter the trading status
	IER
	InstStatusEnterReason
	Auto-switch
	Automatic
	1

	
	
	
	
	Manual switch
	Manual
	2

	
	
	
	
	Fusing
	Fuse
	3

	
	
	
	
	Fuse mannually
	FuseManual
	4

	14
	Conditions of order price
	OPT
	OrderPriceType
	Arbitrary price
	AnyPrice
	1

	
	
	
	
	Price limit
	LimitPrice
	2

	
	
	
	
	Best price
	BestPrice
	3

	15
	Flag of position opening and closing-out
	OF
	OffsetFlag
	Position opening
	Open
	0

	
	
	
	
	Closing-out of position
	Close
	1

	
	
	
	
	Forced closing-out
	ForceClose
	2

	
	
	
	
	Closing out today's position
	CloseToday
	3

	
	
	
	
	Closing out yesterday's position
	CloseYesterday
	4

	16
	Reasons for forced closing-out
	FCC
	ForceCloseReason
	Non-forced closing out
	NotForceClose
	0

	
	
	
	
	Insufficient fund
	LackDeposit
	1

	
	
	
	
	Client exceeded the position limit
	ClientOverPositionLimit
	2

	
	
	
	
	Member exceeded the position limit
	MemberOverPositionLimit
	3

	
	
	
	
	Position is not the integral multiple
	NotMultiple
	4

	
	
	
	
	Market abuse
	Violation
	5

	
	
	
	
	Others
	Other
	6

	
	
	
	
	Person near the delivery day
	PersonDeliv
	7

	
	
	
	
	Hedge volume over position limit
	HedgeOverPositionLimit
	8

	17
	Status of order
	OST
	OrderStatus
	Fulfilled
	AllTraded
	0

	
	
	
	
	Part of transaction is still in the queue
	PartTradedQueueing
	1

	
	
	
	
	Part of transaction is not in the queue
	PartTradedNotQueueing
	2

	
	
	
	
	The unfulfilled is still in the queue
	NoTradeQueueing
	3

	
	
	
	
	The unfulfilled is not in the queue
	NoTradeNotQueueing
	4

	
	
	
	
	Order cancellation
	Canceled
	5

	18
	Type of order
	ORDT
	OrderType
	Normal
	Normal
	0

	
	
	
	
	Quote derivatives
	DeriveFromQuote
	1

	
	
	
	
	Portfolio derivatives
	DeriveFromCombination
	2

	19
	Status of OTC order
	OOS
	OTCOrderStatus
	Input by one party
	Inputed
	0

	
	
	
	
	Already confirmed
	Confirmed
	1

	
	
	
	
	Already cancelled
	Canceled
	2

	
	
	
	
	Already rejected
	Refused
	3

	20
	Type of valid period
	TC
	TimeCondition
	Immediate or cancel order
	IOC
	1

	
	
	
	
	Good for this session
	GFS
	2

	
	
	
	
	Good for the day
	GFD
	3

	
	
	
	
	Good till date
	GTD
	4

	
	
	
	
	Good till cancelled
	GTC
	5

	
	
	
	
	Good for call auction
	GFA
	6

	21
	Volume type
	VC
	VolumeCondition
	Any quantity
	AV
	1

	
	
	
	
	The Min. quantity
	MV
	2

	
	
	
	
	Total number
	CV
	3

	22
	Trigger conditions
	CC
	ContingentCondition
	Immediately
	Immediately
	1

	
	
	
	
	Stop-loss
	Touch
	2

	23
	Operation flag
	AF
	ActionFlag
	Deletion
	Delete
	0

	
	
	
	
	Suspension
	Suspend
	1

	
	
	
	
	Activation
	Active
	2

	
	
	
	
	Modification
	Modify
	3

	24
	Source of order
	OSRC
	OrderSource
	From participants
	Participant
	0

	
	
	
	
	From administrator
	Administrator
	1

	25
	Transaction type
	TRDT
	TradeType
	Common transaction
	Common
	0

	
	
	
	
	Option execution
	OptionsExecution
	1

	
	
	
	
	Transaction of OTC
	OTC
	2

	
	
	
	
	Transaction of EFP derivatives
	EFPDerived
	3

	
	
	
	
	Transaction of portfolio derivatives
	CombinationDerived
	4

	26
	Source of transaction price
	PSRC
	PriceSource
	Previous transaction price
	LastPrice
	0

	
	
	
	
	Bid price
	Buy
	1

	
	
	
	
	Ask price
	Sell
	2

	27
	Status of acccount
	ACCS
	AccountStatus
	Status of activation
	Enable
	0

	
	
	
	
	Stop status
	Disable
	1

	28
	Member type
	MT
	MemberType
	Trading member
	Trading
	0

	
	
	
	
	Settlement member
	Settlement
	1

	
	
	
	
	Comprehensive member
	Compositive
	2

	29
	Execution result
	OER
	ExecResult
	Not executed
	NoExec
	n

	
	
	
	
	Already canceled
	Canceled
	c

	
	
	
	
	Execution sucessful
	OK
	0

	
	
	
	
	Position of option is inadequate
	NoPosition
	1

	
	
	
	
	Fund is inadequate
	NoDeposit
	2

	
	
	
	
	Member doesn't exist
	NoParticipant
	3

	
	
	
	
	Client doesn't exist
	NoClient
	4

	
	
	
	
	Contract doesn't exist
	NoInstrument
	6

	
	
	
	
	No authorization to execute
	NoRight
	7

	
	
	
	
	Unreasonable quantity
	InvalidVolume
	8

	
	
	
	
	No adequate historical transaction
	NoEnoughHistoryTrade
	9

	30
	Administrative order command
	AOC
	AdminOrderCommandFlag
	Position in contract month is not the integral multiple of the forced closing-out position
	NotMultipleForceClose
	1

	
	
	
	
	Initialization of trading meber's credit limit
	InitCreditLimit
	2

	
	
	
	
	Adjustment to trading member's credit limit
	AlterCreditLimit
	3

	
	
	
	
	Cancellation of trading member's creadit limit
	CancelCreditLimit
	4

	31
	Flag for whether position is reserved after option exercrised
	EOPF
	ExecOrderPositionFlag
	reserved
	Reserve
	0

	
	
	
	
	not reserved
	UnReserve
	1

	32
	Flag for whether position is closed automatically after option exercrised
	EOCF
	ExecOrderCloseFlag
	close position automatically
	AutoClose
	0

	
	
	
	
	not closed
	NotToClose
	1

3. Data Type List—Translated
	Name of data type
	Basic data type
	Description of data type

	TShfeFtdcErrorIDType
	int
	Error code

	TShfeFtdcPriorityType
	int
	Priority

	TShfeFtdcSettlementIDType
	int
	Settlement No.

	TShfeFtdcMonthCountType
	int
	Number of month

	TShfeFtdcTradingSegmentSNType
	int
	No.of trading sessions

	TShfeFtdcVolumeType
	int
	Quantity

	TShfeFtdcTimeSortIDType
	int
	Sequence No.of queue by time

	TShfeFtdcFrontIDType
	int
	Front-end No.

	TShfeFtdcSessionIDType
	int
	Dialogue No.

	TShfeFtdcSequenceNoType
	int
	Sequence No.

	TShfeFtdcBulletinIDType
	int
	Bulletin No.

	TShfeFtdcInformationIDType
	int
	Information Message

	TShfeFtdcMillisecType
	int
	Time（millisecond）

	TShfeFtdcVolumeMultipleType
	int
	Contract multiplier

	TShfeFtdcImplyLevelType
	int
	Layer of derivatives

	TShfeFtdcStartPosType
	int
	Starting position

	TShfeFtdcAliasType
	char[3]
	Alias

	TShfeFtdcOriginalTextType
	char[3]
	Original text

	TShfeFtdcParticipantIDType
	char[11]
	Member code

	TShfeFtdcParticipantNameType
	char[51]
	Member name

	TShfeFtdcParticipantAbbrType
	char[9]
	Abbreviation of member

	TShfeFtdcUserIDType
	char[16]
	Transaction user's code

	TShfeFtdcPasswordType
	char[41]
	Password

	TShfeFtdcClientIDType
	char[11]
	Client code

	TShfeFtdcInstrumentIDType
	char[31]
	Contract code

	TShfeFtdcProductIDType
	char[9]
	Product code

	TShfeFtdcProductNameType
	char[21]
	Product name

	TShfeFtdcExchangeIDType
	char[9]
	The Exchange's code

	TShfeFtdcDateType
	char[9]
	Date

	TShfeFtdcTimeType
	char[9]
	Time

	TShfeFtdcInstrumentNameType
	char[21]
	Contract name

	TShfeFtdcProductGroupIDType
	char[9]
	Product suite's code

	TShfeFtdcProductGroupNameType
	char[21]
	Name of product suite

	TShfeFtdcMarketIDType
	char[9]
	Market code

	TShfeFtdcSettlementGroupIDType
	char[9]
	Settlement group's code

	TShfeFtdcOrderSysIDType
	char[13]
	Order No.

	TShfeFtdcOTCOrderSysIDType
	char[13]
	OTC order No.

	TShfeFtdcExecOrderSysIDType
	char[13]
	System No. of execution declaration

	TShfeFtdcQuoteSysIDType
	char[13]
	Quote No.

	TShfeFtdcTradeIDType
	char[13]
	Transaction No.

	TShfeFtdcOrderLocalIDType
	char[13]
	Local order No.

	TShfeFtdcComeFromType
	char[21]
	Source of message

	TShfeFtdcAccountIDType
	char[13]
	Capital account

	TShfeFtdcNewsTypeType
	char[3]
	Bulletin type

	TShfeFtdcAdvanceMonthType
	char[4]
	Month in advance

	TShfeFtdcCommodityIDType
	char[9]
	Commodity code

	TShfeFtdcIPAddressType
	char[16]
	IP address

	TShfeFtdcProductInfoType
	char[41]
	Product information

	TShfeFtdcProtocolInfoType
	char[41]
	Protocol information

	TShfeFtdcBusinessUnitType
	char[21]
	Business unit

	TShfeFtdcTradingSystemNameType
	char[61]
	Name of trading system

	TShfeFtdcTradingRoleType
	char
	Trading role

	TShfeFtdcUserTypeType
	char
	Transaction user's type

	TShfeFtdcProductClassType
	char
	Product type

	TShfeFtdcOptionsTypeType
	char
	Option type

	TShfeFtdcInstrumentStatusType
	char
	Trading status of contract

	TShfeFtdcDirectionType
	char
	Buy-sell direction

	TShfeFtdcPositionTypeType
	char
	Type of open interest

	TShfeFtdcPosiDirectionType
	char
	Direction of long and short open interest

	TShfeFtdcExchangeDataSyncStatusType
	char
	Synchronization state of the Exchange's data

	TShfeFtdcSGDataSyncStatusType
	char
	Synchronization state of settlement group's data

	TShfeFtdcHedgeFlagType
	char
	Flag of speculation and hedge

	TShfeFtdcClientTypeType
	char
	Type of client

	TShfeFtdcInstStatusEnterReasonType
	char
	Reasons for contract to enter the trading status

	TShfeFtdcOrderPriceTypeType
	char
	Conditions of order price

	TShfeFtdcOffsetFlagType
	char
	Flag of position opening and closing-out

	TShfeFtdcForceCloseReasonType
	char
	Reasons for forced closing-out

	TShfeFtdcOrderStatusType
	char
	Status of order

	TShfeFtdcOrderTypeType
	char
	Type of order

	TShfeFtdcOTCOrderStatusType
	char
	Status of OTC order

	TShfeFtdcTimeConditionType
	char
	Type of valid period

	TShfeFtdcVolumeConditionType
	char
	Volume type

	TShfeFtdcContingentConditionType
	char
	Trigger conditions

	TShfeFtdcActionFlagType
	char
	Operation flag

	TShfeFtdcOrderSourceType
	char
	Source of order

	TShfeFtdcTradeTypeType
	char
	Transaction type

	TShfeFtdcPriceSourceType
	char
	Source of transaction price

	TShfeFtdcAccountStatusType
	char
	Account status

	TShfeFtdcMemberTypeType
	char
	Member type

	TShfeFtdcExecResultType
	char
	Execution result

	TShfeFtdcYearType
	int
	Year

	TShfeFtdcMonthType
	int
	Month

	TShfeFtdcLegMultipleType
	int
	Single leg multiplier

	TShfeFtdcLegIDType
	int
	Single leg No.

	TShfeFtdcBoolType
	int
	Bool type

	TShfeFtdcUserActiveType
	int
	Trader's status of activeness

	TShfeFtdcPriceType
	double
	Price

	TShfeFtdcUnderlyingMultipleType
	double
	Contract multiplier for basic commodity

	TShfeFtdcCombOffsetFlagType
	char[5]
	Flag of position opening and closing-out in a portfolio

	TShfeFtdcCombHedgeFlagType
	char[5]
	Flag of speculation and hedge in a portfolio

	TShfeFtdcRatioType
	double
	Ratio

	TShfeFtdcMoneyType
	double
	funds

	TShfeFtdcLargeVolumeType
	double
	Large quantity

	TShfeFtdcNewsUrgencyType
	char
	Urgency

	TShfeFtdcSequenceSeriesType
	short
	Serial No.in sequence

	TShfeFtdcCommPhaseNoType
	short
	Communication phase No.

	TShfeFtdcContentLengthType
	int
	Length of main text

	TShfeFtdcErrorMsgType
	char[81]
	Error message

	TShfeFtdcAbstractType
	char[81]
	Message digest

	TShfeFtdcContentType
	char[501]
	Message body

	TShfeFtdcURLLinkType
	char[201]
	WEB address

	TShfeFtdcIdentifiedCardNoType
	char[51]
	Certificate No.

	TShfeFtdcIdentifiedCardNoV1Type
	char[21]
	Original certificate No.

	TShfeFtdcPartyNameType
	char[81]
	Name of party involved

	TShfeFtdcIdCardTypeType
	char[16]
	Type of certificate

	TShfeFtdcAdminOrderCommandFlagType
	char
	Administrative order commance

	TShfeFtdcDataCenterIDType
	int
	Datacenter code

	TShfeFtdcBusinessLocalIDType
	int
	Local business ID

	TShfeFtdcCurrencyIDType
	char[4]
	Currency ID

	TShfeFtdcRateUnitType
	int
	Exchange Rate Unit Type

	TShfeFtdcExRatePriceType
	double
	Exchange Rate Price

	TShfeFtdcExecOrderPositionFlagType
	char
	flag for whether position is reserved after option exercrised

	TShfeFtdcExecOrderCloseFlagType
	char
	flag for whether position is closed automatically after option exercrised

Member System

Trading System

Connection Request

Connection Confirmation

Identification Authentication Request

Identification Authentication Response

Send Request (if dialog mode)

Send Response (if dialog mode)

Send Private Message (if private mode)

Send Market Announcemetn (if public mode)

Disconnection Request

Disconnection Confirmation

� These data fields are kept for compatiblility with the future version of the NGES Trading System, and their contents are meaningless in the current version. Member System should not assume any meaning for those fields. In the underground communication implementation, TraderAPI uses compressing algorithmion to lower the communication bandwidth cost, while at the same time maintains the compatibility and extendablility of the protocol and TraderAPI. Similar in the following cases.

PAGE

_1415434797.vsd
�

�

SPI object

Quotation information

Quotation front-end

API Object

Login request
Subscription request

Quotation Receiving System

_1415519732.vsd
Member System A

TraderAPI

NGES Trading System

TraderAPI

Member System B

CShfeFtdeTraderApi::
ReqOrderInsert

Order request: Local ID = 1,
cu0711, Buy 20 lots, RMB 64000

Order response: Success,
Local ID = 1, System ID = 1

CShfeFtdeTraderSpi::
OnReqOrderInsert

Order return: System ID = 1,
Local ID = 1, Status = “Not Filled and Still Queuing”

CShfeFtdeTraderSpi::
OnRtnOrder

Order processing

CShfeFtdeTraderApi::
ReqOrderInsert

Order request: Local ID = 1,
cu0711, Sell 10 lots,
RMB 64000

Order response: success,
Local ID = 1, System ID = 2

CShfeFtdeTraderSpi::
OnReqOrderInsert

Trade return: Trade ID = 1, System ID = 2,
Local ID = 1

CShfeFtdeTraderSpi::
OnRtnTrade

Order Processing

Order return: System ID = 1,
Local ID = 1, Status = “Partially Filled and Still Queuing”

Trade return: Trade ID = 1, System ID = 1,
Local ID = 1

CShfeFtdeTraderApi::
ReqOrderAction

Cancellation request,
System ID = 1

Cancellation Processing

Order return,
System ID = 1, Local ID = 1, Status = “Cancelled”

CShfeFtdeTraderSpi::
OnReqOrderAction

Cancellation response: Success

Legend:

Private stream

Response stream

Order return: System ID = 2,
Local ID = 1, Status =“All Filled”

CShfeFtdeTraderSpi::
OnRtnOrder

CShfeFtdeTraderSpi::
OnRtnOrder

CShfeFtdeTraderSpi::
OnRtnTrade

_1415529127.vsd
�

�

�

Connected successfully？�

Randomly choose one front-end from the Front-end list and connect to it�

Establish a session with the front-end

Tried all in the
front-end list ?�

Yes

No

End

Yes

Start

No

Randomly choose a NameServer from the NameServer list and connect to it�

Yes

Connected successfully?

Obtain the front-end list from NameServer

Register the
 front-end list

Register NameServer

Register the front-end list

Tried all in the NameServer list

No

Yes

Yes

No

_1415434774.vsd
�

�

SPI Object

Replys for API requests, e.g.,
transaction information,
client error information,
contract modification information, etc.

Trading front-end

API Object

API requests, e.g.,
login request,
order request,
query request, etc.

Member System

